Pilot production development of plate, steel grade EH36 applying thermo-mechanical controlled process at the rolling mill 3600

  • O.H. Kurpe
  • V.V. Kukhar
Keywords: thermo-mechanical controlled process, hot rolling plate, shipbuilding steel, rolling mill technology


For the first time, technology has been developed, and experimental batch of shipbuilding steel plates (Grade ЕН36, 25 × 2150 × 8000 mm) has been produced according to the requirements of classification societies (Bureau Veritas Rules), at the rolling mill 3600, PJSC “AZOVSTAL IRON & STEEL WORKS”. The technology is developed using general requirements for the manufacture of rolled products with the thermo-mechanical controlled process and mathematical model of the rolling process, on the basis of which the calculations of deformation schedules have been performed. The technical possibility of shipbuilding steel plates (Grade ЕН36, 25 × 2150 × 8000 mm) producing using thermo-mechanical controlled process (TMCP) instead of heat treatment accessing by normalization in accordance with Bureau Veritas Rules has been conformed at the rolling mill 3600. Introduction of the thermo-mechanical controlled process instead of normalization will reduce the production cost of the rolled products by eliminating natural gas consumption for heat treatment (normalization). To prepare the certification, in accordance with Bureau Veritas Rules, it is necessary to conduct an additional series of investigations for the rolled products (Grade EH36) of different thicknesses


1. Militzer M. Thermomechanical Processed Steels Reference Module in Materials Science and Materials Engineering Comprehensive. Materials Processing. Vol. 1, 2014. pp. 191–216.DOI:https://doi.org/10.1016/B978-0-08-096532-1.00115-1.
2. Yu. A. Zinchenko, A. G. Kurpe, O. A. Bagmet. Prospects of the technology used to make skelp at the Azovstal metallurgical combine, Metallurgist. Vol. 52. Nos. 7–8, 2008. pp. 461–463. DOI: https://doi.org/10.1007/s11015-008-9065-4.
3. LI Hai-jun, LI Zhen-lei, YUAN Guo, WANG Zhao-dong, WANG Guo-dong. Development of New Generation Cooling Control System After Rolling in Hot Rolled Strip Based on UFC. Journal of Iron and Steel Research. International, 2013. 20(7). pp. 29–34.
4. LIU En-yang, ZHANG Dian-hua, SUN Jie, PENG Liang-gui, GAO Bai-hong, SU Li-tao. Algorithm Design and Application of Laminar Cooling Feedback Control in Hot Strip Mill. Journal of Iron and Steel Research. International, 2012. 19(4). pp. 39–42. DOI: https://doi.org/10.1016/S1006-706X(12)60085-5.
5. Volodymyr Kukhar, Andrii Prysiazhnyi, Elena Balalayeva, Oleksandr Anishchenko. Designing of induction heaters for the edges of pre-rolled wide ultrafine sheets and strips correlated with the chilling end-effect, Modern Electrical and Energy System MEES’2017, IEEE. Kremenchuk, Ukraine. Kremenchuk Mykhailo Ostrohradskyi National University, 2017. pp. 404–407. DOI: https://doi.org/10.1109/MEES.2017.8248945.
6. Yunbo Xu, Yongmei Yu, Xianghua Liu, and Guodong Wang. Modeling of microstructure evolution and mechanical properties during hot-strip rolling of Nb steels. Journal of University of Science and Technology. Beijing. Vol. 15, 2008. pp. 396–401. DOI: https://doi.org/10.1016/S1005-8850(08)60075-4.
7. P. Korczak, H. Dyja. Investigation of microstructure prediction during experimental thermo-mechanical plate rolling. Journal of Materials Processing Technology. 109, 2001. pp. 112–119. PII: S 0924-0136(00)00784-6.
8. Xiangwei Kong, Liangyun Lan. Optimization of mechanical properties of low carbon bainitic steel using TMCP and accelerated cooling. 11th International Conference on Technology of Plasticity. ICTP. 2014. pp. 19–24. Nagoya Congress Center. Nagoya, Japan. Procedia Engineering 81, 2014. pp. 114–119.
DOI: https://doi.org/10.1016/j.proeng.2014.09.136.
9. Sir Harshad Bhadeshia. Thermomechanical Treatment of Steels. Microstructure and Properties (Fourth edition), 2017. pp. 271–301. DOI: https://doi.org/10.1016/B978-0-08-100270-4.00010-X.
10. V. Carretero Olalla, V. Bliznuk, N. Sanchez, P. Thibaux, L.A.I. Kestens, R.H. Petrov. Analysis of the strengthening mechanisms in pipeline steels as a function of the hot rolling parameters. Materials Science & Engineering A 604, 2014. pp. 46–56. DOI: https://doi.org/10.1016/j.msea.2014.02.066.
11. J. Zhao, W. Hu, X. Wang, J. Kang, Y. Cao, G. Yuan, H. Di, R.D.K. Misra. A Novel thermo-mechanical controlled processing for large-thickness microalloyed 560 MPa (X80) pipeline strip under ultra-fast cooling. Materials Science & Engineering A 673, 2016. pp. 373–377. DOI: https://doi.org/10.1016/j.msea.2016.07.089.
12. J. Zhao, W. Hu, X. Wang, J. Kang, G. Yuan, H. Di, R.D.K. Misra. Effect of microstructure on the crack propagation behavior of microalloyed 560 MPa (X80) strip during ultra-fast cooling. Materials Science & Engineering A 666, 2016. pp. 214–224. DOI: https://doi.org/10.1016/j.msea.2016.04.073.
13. TAN Wen, LIU Zhen-yu, WU Di, WANG Guo-dong. Artificial Neural Network Modeling of Microstructure During C-Mn and HSLA Plate Rolling. Journal of Iron and Steel Research. International, 2009. 16(2). pp. 80–83. DOI: https://doi.org/10.1016/S1006-706X(09)60032-7.
14. DONG Rui-feng, SUN Li-gang, LIU Zhe, WANG Xue-lian, LIU Qing-you. Microstructures and Properties of X60 Grade Pipeline Strip Steel in CSP Plant. Journai of Iron and Steei Research. International, 2008. pp.71–75. DOI: https://doi.org/10.1016/S1006-706X(08)60035-7.
15. Alexey Gervasyev, Victor Carretero Olalla, Jurij Sidor, Nuria Sanchez Mouriño, Leo A.I. Kestens, Roumen H. Petrov. An approach to microstructure quantification in terms of impact properties of HSLA pipeline steels. Materials Science & Engineering A 677, 2016. pp. 163–170.
DOI: https://doi.org/10.1016/j.msea.2016.09.043.
16. Bagmet O.A. Formirovanie optimal'nyh struktur i svojstv pri provedenii kontroliruemoj prokatki trubnyh stalej, soderzhashhih niobij // Avtoreferat dis. M. «Grafiks V». 2007. 23 S.
17. Sposib vyrobnyctva stalevyh vysokomicnyh elektrozvarnyh odnoshovnyh trub velykogo diametra dlja magistral'nyh truboprovodiv: pat. 98214 Ukrai'na: MPK (2012.01), B21C 37/08 (2006.01) B21B 1/32 (2006.01) C22C 38/00 C21D 8/02 (2006.01) C21D 8/10 (2006.01) B23K 9/025 (2006.01). № a 2010 11473; zajava 27.09.2010; publ. 25.04.2012, Bjul.№ 8. 7 s.
18. Sposib vyrobnyctva stalevyh vysokomicnyh elektrozvarnyh dvoshovnyh trub velykogo diametra dlja magistral'nyh truboprovodiv: pat. 96097 Ukrai'na: MPK (2011.01), B21C 37/08 (2006.01) C22C 38/00 C21D 1/00 B21B 1/22 (2006.01) B23K 9/00. № a201011469; zava 27.09.2010; publ. 26.09.2011, Bjul. № 18. 5 s.
19. Vahid Javaheria, Nasseh Khodaieb, Antti Kaijalainena, David Portera. Effect of niobium and phase transformation temperature on the microstructure and texture of a novel 0.40% C thermomechanically processed steel, Materials Characterization 142, 2018. pp. 295–308. DOI: https://doi.org/10.1016/j.matchar.2018.05.056.
20. G. W. Bright, J. I. Kennedy, F. Robinson, M. Evans, M. T. Whittaker, J. Sullivan, Y. Gao. Variability in the mechanical properties and processing conditions of a High Strength Low Alloy steel. Procedia Engineering 10, 2011. pp. 106–111. DOI: https://doi.org/10.1016/j.proeng.2011.04.020.
21. TAN Wen, HAN Bin, WANG Shui-ze, YANG Yi, ZHANG Chao, ZHANG Yong-kun. Effects of TMCP Parameters on Microstructure and Mechanical Properties of Hot Rolled Economical Dual Phase Steel in CSP. Journal of Iron and Steel Research. International, 2012. 19(6). pp. 37–41. DOI: https://doi.org/10.1016/S1006-706X(12)60124-1.
22. S. Tang, Z.Y. Liu, G.D. Wang, R.D.K. Misra. Microstructural evolution and mechanical properties of high strength microalloyed steels: Ultra Fast Cooling (UFC) versus Accelerated Cooling (ACC). Materials Science & Engineering A 580, 2013. pp. 257–265. DOI: https://doi.org/10.1016/j.msea.2013.05.016.
23. Sposib vyrobnyctva garjachekatanogo prokatu pidvyshhenoi' micnosti: pat. 110812 Ukrai'na: MPK B21B 1/46 (2006.01). № u 2016 03353; zajava 31.03.2016; publ. 25.10.2016, Bjul.№ 20. 4 s.
24. Sposib vyrobnyctva garjachekatanogo prokatu pidvyshhenoi' micnosti: pat 121374 Ukrai'na: MPK B21B 1/46 (2006.01). № u 2017 01785; zajava 24.02.2017; publ. 11.12.2017, Bjul.№ 23. 4 s.
25. Teoreticheskij analiz momenta pri prokatke s natjazheniem polosy / O. P. Maksimenko, A. G. Prisjazhnyj, V. V. Kukhar, E. V. Kuz'min // Obrabotka materialov davleniem : sb. nauch. tr. / DGMA. – Kramatorsk : DGMA, 2017. – № 1 (44). – S. 199–203.
26. Kukhar V. V. Utochnenie metodiki rascheta teplovyh poter metalla na nepreryvnyh stanah gorjachej prokatki / V. V. Kukhar, A. G. Kurpe // Obrabotka materialov davleniem : sb. nauch. tr. / DGMA. – Kramatorsk : DGMA, 2018. – № 1 (46). – S. 159–166.
27. Kurpe O. H. Utochnennja rozrahunku teplovyh vtrat metalu na stanah Stekkelja / O. H. Kurpe, V. V. Kukhar, Je. V. Zmaznjeva // Problems of Tribology, 2018. – № 1. – S. 78–84.
28. Kukhar V. V. Rozrobka tehnologii vyrobnyctva lystovogo prokatu tovshhynoju 4 mm na stani 3200 zavodu Trametal SpA / V. V. Kukhar, O. G. Kurpe // Metallurgycheskaja y gornorudnaja promіshlennost, 2018. – № 2. S. 24-29.
29. Volodymyr Kukhar, Viktor Artiukh, Andrii Prysiazhnyi and Andrey Pustovgar. Experimental Re-search and Method for Calculation of ‘Upsetting-with-Buckling’ Load at the Impression-Free (Dieless) Preform-ing of Workpiece. E3S Web of Conference (HRC 2017). Vol. 33. 02031, 2018, https://doi.org/10.1051/e3sconf/20183302031.
30. Rule Note NR 216 DT R09 E. Rules on Materials and Welding for the Classification of Marine Units. –Bureau Veritas, January 2017. – p. 260.