Підвищення зносостійкості трибоспряжень зразків "сталь 45-чавун СЧ20" з геомодифікатором КГМТ-1

  • V. Aulin Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine
  • S. Lysenko Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine
  • A. Hrynkiv Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine
  • A. Chernai Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine
  • I. Zhylova Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine
  • A. Lukashuk Central Ukrainian National Technical University, Kropyvnytskyi, Ukraine
Ключевые слова: трибоспряження зразків, геомодифікатор, композиційна олива, момент тертя, зносостійкість, акустична емісія, зона тертя, олива М10-Г2К

Аннотация

Підвищення зносостійкості трибоспряжень різних типів спряжень, що функціонують в рідинному мащені, можливе за рахунок: вибору більш якісного і вартісного матеріалу зразків, що не завжди є доцільним; нанесення зносостійких покриттів на них; підбір та формування комплексного складу добавок в оливу. З розвитком наноматеріалів в трибології створилась можливість ефективно використовувати функціональні добавки у вигляді геомодифікаторів. При впровадженні композиційних олив з геомодифікаторами не потрібно виконувати конструктивні зміни спряжень деталей машин, але їх зносостійкість збільшується. Це потребує проведення експериментальних трибологічних досліджень.

Виявлено, що модифіковані оливні середовища геомодифікатором підвищують зносостійкість робочих поверхонь різних типів трибоспряжень. Запропоновано використання геомодифікатора КGМF-1 (Катеринівський геомодифікатор тертя – 1). Були виявлені усереднені показники зносу, критичне навантаження та навантаження зварювання. Для більш точного відображення процесу зміни зносостійкості спряжень зразків, що функціонують в базовій та модифікованій оливі, запропоновано поділ зразків в спряженнях на чотири типи за характерними ознаками: рухомість, твердість матеріалу і площа зони тертя. Зменшення моменту сили тертя різних спряжень зразків в модифікованій оливі геомодифікатором КGМF-1 в порівнянні з базовою оливою М-10Г фіксували при використанні машини тертя моделі 2070 СМТ-1 з додатковим модулем "кільце-кільце". Дослідження інтенсивності зношування зразків в модифікованій оливі геомодифікатором КGМF-1 в порівнянні з базовою оливою проводили методом вимірювання амплітуди акустичного сигналу безпосередньо із зони тертя за допомогою приладу фірми Brüel & Kjear. В свою чергу зафіксовано, що максимальна інтенсивність зношування зразків, при їх функціонуванні в модифікованої оливі М10-Г + КGМF-1, зменшилась в 2...3 рази, а закономірність зміни моменту тертя аналогічна зміні інтенсивності зношування від тривалості випробування

Литература

1. V. Aulin, V. Slon, S. Lysenko, D. Holub, Research of Change of The Power of the Diesel of Cars Working in Non-Stationary Conditions, MOTROL. Commission of Motorization and Energetics in Agriculture, vol. 17, no. 2, pр. 103-108, 2015.
2. V. Aulin, V. Slon, S. Lysenko, The Character of Change of Tribo-Technical Descriptions of Interfaces of Diesels During Their Work in the Different Modes, The Problems of Tribology. Khmelnytskyi, no. 3, pр. 89-96, 2013.
3. V. Aulin, A. Hrinkiv, A. Dykha, M. Chernovol, O. Lyashuk, S. Lysenko, Substantiation of Diagnostic Parameters for Determining the Technical Condition of Transmission Assemblies in Trucks, Eastern European Journal of Enterprise Technologies, vol. 2, no. 1(92), pp. 4-13, 2018.
4. А.P. Pavlov, N.G. Petrov, Comparative Analysis of Motor Oil Additives Characteristics Sold on Rus-sian Market, Automobile. Road. Infrastructure, vol. 2, no. 12, pp. 5-12, 2017.
5. М.N. Svyryd, А.P. Kudryn, L.B. Pryimak, Use of ХАDО-additives in Tribomagnetic Reconditioning, Bulletin of Khmelnytskyi National University, vol. 6, pp. 122-125, 2011.
6. D.А. Gomon, А.М. Dudka, І.І. Nachovnyi, Comparative Study of Motor Oil Anti-Wear Additives Per-formance. VIII International scientific-technical conference «Chemistry and Modern Technologies», vol. V, Dni-pro, 26-28 April, 2017, pp. 125, 2017.
7. G.M. Ashmarin, V.V. Aulin, M. Yu. Golubev, S.D. Zvonkov, Grain Boundary Internal Friction of Un-alloyed Copper Subjected to Continuous Laser Radiation, Physics and Chemistry of Materials Treatment, vol. 20, no. 5, pp. 476-478, 1986.
8. M.I. Chernovol, E.K. Solovykh, Prediction of Thickness of Solid-Lubricant Film Formed at Friction of Metal-Polymer Composite Coating, Journal of Friction and Wear, vol. 18, no. 2, pp. 40-45, 1997.
9. A. Dunayev, S. Sharifullin, Modernisation of Threadbare of Technique with the Use of Tribo-Preparations, Kazan: Edition of the Kazan University, 2013.
10. D. Vasilkov, I. Pustovoy, The Analysis of the Layer Formed by the Mineral Modifier of Surface of Friction, Мoscow: Trudy GOSNIITY, vol. 107, iss. 2, pp. 11-13.
11. S. Baskar, G. Sriram, S. Arumugam, Experimental Analysis on Tribological Behaviour of Nano Based Bio-Lubricants Using Four Ball Tribometer, Tribology in Industry, vol. 37, no. 4, pp. 449-454, 2015.
12. V. Aulin, A. Hrynkiv, S. Lysenko, I. Rohovskii, M. Chernovol, O. Lyashuk, T. Zamota, Studying Truck Transmission Oils Using the Method of Thermal-Oxidative Stability during Vehicle Operation, Eastern-European Journal of Enterprise Technologies, vol. 1, no. 6(97), pp. 6-12, 2019.
13. B. Basu, M. Kalin, Tribology of Ceramics and Composites: Materials Science Perspective, New York: Wiley, 2011.
14. V. Aulin, T.N. Zamota, S. Lysenko, Increase of Machine Parts Performance Wear Resistance by Their Tribological Reconditioning and Control of Wear-In Processes, MOTROL. Commission of Motorization and En-ergetics in Agriculture, vol. 18, no. 2, pp. 89-96, 2016.
15. V. Aulin, W. Arifa, S. Lysenko, A. Kuzyk, Improving of the Wear Resistance of Working Parts Agri-cultural Machinery by the Implementation of the Effect of Self-Sharpening, International Journal of Engineering and Technology, vol. 5, no. 4, pp. 126-130.
16. C. Anderberg, Z. Dimkovski, B.-G. Rosén, T.R. Thomas, Low Friction and Emission Cylinder Liner Surfaces and the Influence of Surface Topography and Scale, Tribology International, pp. 224-229, 2019.
17. T. Kuwahara, P.A. Romero, S. Makowski, V. Weihnacht, G. Moras, M. Moseler, Mechano-Chemical Decomposition of Organic Modifiers With Multiple Reactive Centres Induces Superlubricity of Ta-C, Nature Communications, vol. 10, no. 1, 151, 2019.
18. J. Yuansheng, L. Shenghua, Superlubricity of in Situ Generated Protective Layer on Worn Metal Sur-faces in Presence of Mg6Si4O10(OH)8, in A. Erdemir, J.M. Martin (Ed.): Superlubricity. Elsevier, pp. 445-469, 2007.
19. M. Ebrahimi, M.H. Shaeri, C. Gode, H. Armoon, M. Shamsborhan, The Synergistic Effect of Dilute Alloying and Nanostructuring of Copper on the Improvement of Mechanical and Tribological Response, Com-posites Part B: Engineering, vol. 164, pp. 508-516, 2019.
20. A. Dounaev, Friction Surfaces Modification Using Tribo-Compounds, World Applied Sciences Jour-nal, vol. 31, no. 2, 272-276, 2014.
21. A. Dykha, V. Aulin, O. Makovkin, S. Posonskiy, Determining the Characteristics of Viscous Friction in the Sliding Supports Using the Method of Pendulum, EasternEuropean Journal of Enterprise Technologies, vol. 3, no. 7(87), pp. 4-10, 2017.
22. D. Lutsak, P. Prysyazhnyuk, M. Burda, V. Aulin, Development of a Method and an Apparatus for Tri-botechnical Tests of Materials Under Loose Abrasive Friction, EasternEuropean Journal of Enterprise Technolo-gies, vol. 5, no. 7(83), pp. 19-26, 2016.
23. V. Aulin, V. Slon, S. Lysenko, D. Holub. Pat. 81598 Ukraine, The Work Piece Lubricating Composi-tion, Declarant and Patent holders is the Kirovohrad National Technical University, №u201213907, declared 06.12.2012, published 10.07.2013, no. 13, 2013.
24. Z. Geng, D. Puhan, T. Reddyhoff, Using Acoustic Emission to Characterize Friction and Wear in Dry Sliding Steel Contacts. Tribology International, vol. 134, pp. 394-407, 2019.
Опубликован
2019-07-29
Раздел
Статьи