TexHiuHI HayKu ISSN 2307-5732

PAJIIOTEXHIKA, EJJEKTPOHIKA TA TEJJEKOMYHIKAIIIT

UDC 681.3
VERA YURIIVNA TITOVA

Khmelnytsky National University

COMPARATIVE ANALYSIS OF NEURAL NETWORKS FOR THE EVALUATION OF
SOFTWARE QUALITY

The problem of software quality evaluation is considered in this paper. Software quality is evaluated using a quality
model. The quality model consists of software quality metrics classified into a hierarchical tree structure. The upper level of
this structure consists of quality characteristics, and the lower level consists of software quality attributes. Based on the
analysis of these characteristics and attributes, the authors determine that current quality model is not formalized. So, they
propose the formalized model of software quality. This model is the basis for an unsupervised neural network for software
quality evaluation. Based on the comparative analysis of clustering validation indexes a Kohonen SOM is chosen. The model
and the neural network developed in this paper become the basis for developing a software quality evaluation system.

Keywords: Kohonen SOM, ART-network, Clustering Validation Indexes, Software Quality Model, Neural Networks,
Unsupervised Learning, Comparative Analysis.

B.IO. TITOBA

XMeNnbHULBKHI HAl[lOHAIBHUH YHIBEPCUTET
MOPIBHSLJIbHUAY AHAJII3 HEUPOHHUX MEPEX JJIs1 OIHKHU AKOCTI TIPOT'PAMHOI'O 3ABE3IIEYEHHSA

B pobomi poszasidaemucsi npobaema OYIiHKU SIKOCMI npozpamHozo 3abesneveHHs. fkicmb npozpamHozo 3ab6e3neyeHHs
oyiHloembesl 3@ donomozoi Modeai sikocmi. Modeav sikocmi cknadaembcsi 3 NOKA3HUKI@ sIKOCMI NPO2PAMHO20 3a6e3neyeHHs,
Kaacugikoganux y iepapxiuHy cmpykmypy depesa. BepxHili pigeHb yiei cmpykmypu ckaadaemuvcsi 3 Xapakmepucmuk s5KOCMi, a HUMCHIT
piseHb cknadaembesi 3 ampubymie skocmi npo2pamHozo 3abe3nevenHs. Ha nidcmasi aHanizy yux xapakmepucmuk ma ampubymis aemopu
8U3HA4AOMb, WO nomo4yHa Modenb sKocmi € HedopmanizoeaHow. A momy, 6oHU nponoHyloms @opmanizosany mooeab sKocmi
npozpamHozo 3a6e3nedeHHs. 3a3sHa4eHa Modenb € OCHOB0H HelUpOHHOI Mepedxcl, Wo Has4aemvcsl 6e3 euumens, 041 OYIHKU sIKocmi
npozpamHozo 3abesneyeHHs. Ha ocHO8I nopigHs/bHO20 aHa/idy NokasHukie Kiaacmepusayii aemopamu 06paHo HeUpOHHYy Mepexcy
KoxoneHa. Modeaw i HelipoHHa Mmepedsca, po3pobjeHi 8 0aHill cmammi, € HACMYNHUM KPOKOM 0451 po3po6KU cucmemu OYiHKU siKocmi
npo2pamHoz2o 3a6e3ne4eHHsl.

Kawuosi caoea: APT-mepexca, iHOekcu nepegipku kKaacmepusayii, mModeab sskocmi npo2pamHo20 3abe3neveHHs, HelpoHHI
Mepexci, HeKOHMPOAbOBAHE HA8YAHHSI, NOPIBHANLHUU AHAI3.

Introduction. Improving of software quality is one of the important and actual tasks of software
development. The solution of this problem is especially important for critical software, which is related to the safety
of people.

There is no single approach to software quality evaluation for today. So, the development of regulatory
framework that defines software quality requirements and the development of methods for the evaluating
implementation of these requirements are needed for software quality improving [1].

One of the ways for the evaluation of software quality is evaluation using a quality model. There are
several software quality models for today. Their comparative analysis is presented in this study [1]. Based on it, we
can conclude that the software quality model described here [2] is the most relevant for software development.

This quality model consists of two parts [2]: a product quality model and a quality in use model. The
characteristics and subcharacteristics of these two models are shown in Fig. 1 [2]:

These characteristics and subcharacteristics are the input data for the evaluation of software quality. They
are divided into [2]:

- descriptive, that describe the set of tools and general properties of an object, its functions, security and
importance;

- quantitative, which can be measured and numerically compared with requirements;

- qualitative, which are determined by expert method.

So, the using of mathematical methods to solve the problem of software quality evaluation is impossible
because the input data is heterogeneity. The formalization of the software quality model enables to simplify the
solution of this problem and, as a result, to improve the quality of using software.

Formalized model of software quality. For the formalization of the model we use sets theory apparatus.
We mark total quality - Q. It’s calculated by the values of product quality characteristics Qp and by the values of

quality in use characteristics Q;; . Op is determined from the sets of characteristics:

- functional suitability FS, FS={fs,, fs,, 53}, where fs; - functional completeness, fs, - functional
correctness, f5;- functional appropriateness;

- performance efficiency PE, PE ={pe,, pe,,pe;}, where pe, - time behavior, pe, - resource

utilization, pe; - capacity;

BicHuk XmeabHUYbK020 HAYioHA/1bHO20 yHigepcumemy, Ne5, 2018 (265) 7

Technical sciences

ISSN 2307-5732

Product Quality Model

(Sub)Characteristic

(Sub)Characteristic

Quality in use Model

(Sub)Characteristic

Co-existence

Accountability

Functional suitability Reliability Effectiveness
Functional completeness Maturity Efficiency

Functional correctness Availability Satisfaction

Functional appropriateness Fault folerance Usefulness
Performance efficiency Recoverability Trust

Time behaviour Security Pleasure

Resource utilization Confidentiality Comfort

Capacity Integrity Freedom from risk
Compatibility Nen-repudiation Economic rigk mitigation

Health and safety risk mitigation

Interoperability

Authenticity

Envirenmental risk mitigation

Usability Maintainability Context coverage
Appropriateness recognizability Modularity Context completeness
Learnability Reusability Flexibility
Operability Analysability
User error protection Medifiability
User interface aesthetics Testability
Accessibility Portability
Adaptability
Installability

Replaceability

Fig. 1. Quality model characteristics and subcharacteristics

- compatibility C , C={c|,c,}, where ¢, - co-existence, c, - interoperability;

- usabilityU , U ={u,u,,usz,u,,us,uq}, where u,- appropriateness recognizability, u, - learnability,
u4 - operability, u, - user error protection, us- user interface aesthetics, u - accessibility;

- reliabilityR, R={n,r,,r;,r4}, where r - maturity, »,- availability, »;- fault tolerance,r, -
recoverability;

- security S, S={s,,5,,53,54,55}, where s;- modularity, s,- confidentiality, s;- integrity, s,-
modifiability, s5 - testability;

- maintainability M , M ={m;,m,,my,m,,ms}, where m; - modularity, m,- reusability, m;- non-
repudiation, m, - accountability, m;- authenticity;

- portability P, P={p,, p,,p3},where p, - adaptability, p,- installability, p; - replaceability.

From the definitions of characteristics we can conclude that they are interrelated. For example, usability
depends on performance efficiency, and reliability depends on maintainability. So, to determine product quality, we
use a multiplicative index or the product of sets.

0, = FSXPEXCXUXRXSXMXP €]

The quality of use consists of characteristics or the sets of characteristics: effectiveness - es ; efficiency -
ey ; satisfaction - ST, ST = {st,,st,,st;,st,}, where st, - usefulness, st,- trust, st;- pleasure, st,- comfort;
freedom from risk - FR,FR ={fi, fr,, fiy}, where fi;- economic risk mitigation, fr, - health and safety risk
mitigation, fi4 - environmental risk mitigation; context coverage - CC,CC ={cc|,cc,}, where cc - context
completeness, cc, - flexibility.

These characteristics are dependent on the characteristics of product quality. For example, effectiveness
depends on the characteristics of functionality suitability, reliability, usability, maintainability, portability;
satisfaction - on the characteristics of functionality suitability, portability and usability.

So, to evaluate total quality, we use the multiplicative index again.

0=0px0y (2)
We can present the formalized software quality model in the following form:
O =(FSXPEXCXUXRXSXMXP)xQy 3)

A similar model has already been considered in [3], but it has the following drawbacks. Firstly, it doesn’t
take into consideration the relationships between the product quality parameters. Secondly, it does not take into
consideration the type of software. The latter is important, since different quality parameters can be important for
the different types of software.

We determine the following types of software based on software classification [4]:

- critical software or the software of high importance - is the software that performs critical functions
that are important to security, that is, software whose failure to perform functions or its misuse or negligence can
become catastrophic or critical consequences. Automated systems in the space industry, the nuclear industry,

8 Herald of Khmelnytskyi national university, Issue 5, 2018 (265)

TexHiuHI HayKu ISSN 2307-5732

medicine and other spheres are the example of such software;

- the software of medium importance — is the software whose failure to perform functions or its misuse
or negligence can become financial or information losses, but not catastrophic or critical consequences. System
software and some application programs are the example of such software;

- the software of low importance - is the software whose failure to perform functions or its misuse or
negligence can become the moral dissatisfaction of users and haven’t other consequences. Computer games and
other entertainment programs are the example of such software.

So, we have the set of software types CL = {c/,,cl,,cl;}, where ¢/ - critical software, c/, - the software of

medium importance, cl;- the software of low importance. Given relationships between quality characteristics and

software types, we have the following quality model (4).
O=((FSXPEXCXUXRXSXM XP)xQy)xCL “4)

We replace sets by their corresponding characteristics and subcharacteristics, and we obtain the following
formula (5), which is the Formalized Model of software quality.

We can conclude from the analysis of the model, that:

- software quality depends on the large number of interrelated characteristics;

- the evaluation of software quality cannot be reduced to usual numerical calculations.

(fsy, pey,cp uy,n,s1,my, pyes,ey, sty, fiy,cep,cly),
(51, pey,cysuysry,sy,my, pyses,ey, sty fry,ccp,cly),
(ﬁ]’pehclau]7r]7S1’m1’p]7es’eyaSt1’ﬁlaccl’Cl3)a
(fs1, pey,cpyuy, 1, 81,my, py,es,ey, sty, fiy,ccy,cly),
(ﬁ]’pelaclau]’r]7S1’m1’p]7es’ey’Stl’ﬁlaCCZaC12)a
.(fslspelacl’“1:rlaslamlsplaess@yssﬁsf’”l’ccz,d3)s
Q =4 (5)
(fs3,pe3,cz,u6,r4,s5,ms,p3,es,ey,st4,fr3,cc],cl]),
(/S35 pe3,CysUgsTy,Ss5,Ms, P3,€5,€y, 58y, fiy,ccp,cly),
(fs3,pe3,cz,u6,r4,s5,m5,p3,es,ey,st4,fr3,ccl,cl3),
(fs3, pes,cy g, 1y,85,ms, Py, es,ey,sty, fry,ccy,cly),
(fS3,pes3,CysUg,Ty,S5,Ms, P3,es,ey,8ty, firy,ccy,cly),
(fs3, pe3,cy,lg,1y,S5,Ms, P3,€S,ey,8ty, fry,ccy,cly),

So, the problem of software quality evaluation belongs to the difficult formalized tasks. Today, artificial
neural networks are one of the perspective ways to solve such problems. So, we use a neural network method to
evaluate software quality.

Analysis of neural networks for software quality evaluation. One of the neural networks for software
quality evaluation is considered in this paper [3]. It belongs to the supervised neural networks.

However, in the process of training this neural network, difficulties arise with the accuracy of output
training sets. Since the data obtained through expert evaluation can be incorrect due to the subjectivity of experts.
For example, different experts from developers, users or customers can differently evaluate software quality for the
same input data. And the data obtained through the testing of software matching with requirements for it can be
incorrect, because the test results are determined by the values "passed" and "not passed," without specifying the
degree of passing. So, we decide to use an unsupervised neural network to avoid difficulties in the formation of
training sets.

Among the most perspective unsupervised neural networks for today are an ART-2 network and a Kohonen
SOM. So, we compare these two networks based on a training data set. The training data set is the values of quality
characteristics and subcharacteristics described above. The size of the training set is 150 that match to 150 tested
programs. The values of the input data are determined using the method described here [S]. Software testing takes
place on the base of software of the Khmelnytsky National University information and computer center.

For the neural network comparative analysis we use the following clustering validation indexes [6—8]:

- Davies—Bouldin Index (DBI) - is a function of the ratio of sum of within-cluster scatter to between-
cluster separation. The ideal DBI presents minimal ratio of within-cluster scatter and between-cluster separation;
therefore, minimizing within-cluster scatter and maximizing between-cluster separation are desired;

- Calinski-Harabasz Index (CHI) - is a function of the ratio of sum of squares among the clusters to sum
of squares within the clusters. A better clustering result is indicated by a higher CH value;

- Ray-Turi Index (RTI) - is a function of the ratio of the intra-cluster distance to minimal of inter-cluster
distance. The clustering result which gives a minimum RTI tells us what the ideal number of clusters is since
minimizing inter-cluster distance and maximizing inter-cluster one are presented,

- Dunn Index (DI) - is a function which takes the minimal ratio of inter-cluster distance to maximal
intra-cluster distance. The main goal of DI is to maximize inter-cluster distances and minimize intra-cluster
distances. Therefore, the number of clusters that maximizes DI is taken as the ideal clustering result.

The number of output clusters can be two, three, four, five or six.

If the number of clusters is two, then they take the following values: software needs rework and software
doesn’t need rework.

If the number of clusters is three, then they take the following values: software needs full rework; software
needs rework, but not a full one; software doesn’t need any rework.

If the number of clusters is four, then they take the following values: software needs full rework; software

BicHuk XmeabHUYbK020 HAYioHA/1bHO20 yHigepcumemy, Ne5, 2018 (265) 9

Technical sciences ISSN 2307-5732

needs large rework; software needs little rework; software doesn’t need any rework.

If the number of clusters is five, then they take the following values: software needs full rework; software
needs large rework; software needs medium rework; software needs little rework; software doesn’t need rework.

If the number of clusters is six, then they take the following values: software needs full rework; software
needs large rework; software rather needs large rework than little rework; software rather needs little rework than
large rework; software needs little rework; software doesn’t need rework.

We implement both neural networks in Matlab. The results of networks comparison are shown in Fig. 2.

We can conclude from this comparison that the Kohonen SOM shows the best results for all indexes.
Therefore, we choose this neural network for software quality evaluation.

The optimal clusters number is also selected from the results of comparison. Three indexes have the
maximum value for four clusters. The value of the fourth index is satisfactory for this clusters number. So, we
evaluate software quality by four classes: software needs full rework; software needs large rework; software needs
little rework; software doesn’t need any rework.

= . ~=ART =g —8— ART
| - —tr— SOM Y5 —— S0M
LS e
! 40
0.5 20
0 0
3 4 5 6 2 3 4 5 6
of clusters # of clusters
4.5 0.45
4 0.4
3s 035 ‘/‘/\‘/4
3 03
25 —e— ART _ 025 \‘ —8— ART
%2 ——SoM ° 02 —— SOM
L5 0.15
1 0.1
0.5 0.05
0 0
3 4 5 6 2 3 4 5 6
of clusters # of clusters

Fig. 2. The results of networks comparison

Results of experiments. We test selected neural network for software quality evaluation in the training set.
The fragment of this set is shown in Table 1.

Table 1
Training fragment set for the neural network for software quality evaluation

Soft. | Soft. | Soft. | Soft. | Soft. | Soft. | Soft. | Soft. | Soft. | Soft.
No.1 | No.2 | No.3 | No.4 | No.5 | No.6 | No.7 | No.8 | No.9 | No.10
fc, 1 1 0.9 0.9 0.8 0.8 0.9 1 0.9 1
fc, 1 1 0.9 0.9 0.8 0.8 0.9 1 0.9 1
fcs 1 1 0.9 0.9 0.8 0.8 0.9 1 0.9 1
pe; 1 1 1 1 0.9 0.9 1 1 1 1
pes 1 1 1 1 0.9 0.9 1 1 1 1
pes 1 1 1 1 0.9 0.9 1 1 1 1
C 1 1 1 1 1 1 1 1 1 1
C) 1 1 1 1 1 1 1 1 1 1
u 1 1 1 1 1 1 1 1 1 1
up 1 1 1 1 1 1 1 1 1 1
us3 1 1 1 1 1 1 1 1 1 1
Uy 1 0.9 0.85 0.8 1 1 0.8 1 1 1
Us 1 1 1 0.9 1 1 0.9 1 1 1
Ug 1 1 1 1 1 1 1 1 1 1
I 1 1 1 1 1 1 1 1 1 1
1) 1 1 1 1 0.8 1 1 1 1 1
I3 1 0.9 0.9 0.8 07 0.9 0.8 1 1 1
14 1 1 1 0.9 0.7 0.9 0.9 1 1 1
Sy 1 1 1 1 1 1 1 1 1 1
Sy 1 1 1 1 1 1 1 1 1 1

10 Herald of Khmelnytskyi national university, Issue 5, 2018 (265)

TexHiuHI HayKu ISSN 2307-5732

Table 1 (continue)

Soft. | Soft. | Soft. | Soft. | Soft. | Soft. | Soft. | Soft. | Soft. | Soft.

No.1 | No.2 | No.3 | No4 | No.5 | No.6 | No.7 | No.8 | No.9 | No.10
S3 1 1 1 1 1 1 1 1 1 1
S4 1 1 1 1 1 1 1 1 1 1
Ss 1 1 1 1 1 1 1 1 1 1
m; 1 0.9 0.9 0.9 0.9 0.9 0.9 0.9 1 1
m, 1 1 1 1 1 1 1 0.9 1 1
m; 1 1 1 1 1 1 1 0.9 1 1
my 1 0.9 0.9 0.9 0.9 0.9 0.9 0.9 1 1
ms 1 1 1 1 1 1 1 0.9 1 1
pi 1 0.9 0.9 0.9 0.9 0.9 0.9 1 1 1
P2 1 1 1 1 1 1 1 1 1 1
ps 1 0.9 0.9 0.9 0.9 0.9 0.9 1 1 1
es 1 1 1 1 0.75 1 1 1 1 1
ey 1 1 1 1 0.6 1 1 1 0.9 0.9
sty 1 1 1 1 1 1 1 1 0.8 0.95
sty 1 1 1 1 1 1 1 1 0.8 0.95
St; 1 1 1 1 1 1 1 1 0.8 0.95
Sty 1 1 1 1 1 1 1 1 0.8 0.95
fr, 1 1 1 1 1 1 1 1 1 1
fr, 1 1 1 1 1 1 1 1 1 1
fr3 1 1 1 1 1 1 1 1 1 1
cCy 1 1 1 1 0.8 1 1 1 1 1
cCy 1 1 1 0.9 0.6 0.9 0.9 1 1 1
cly 0 0 0 0 1 0 0 0 0 0
cl, 1 0 1 0 0 1 1 0 0 0
cls 0 1 0 1 0 0 0 1 1 1

Input values consist of quality subcharacteristics and software classes. The values are in the range [0..1]. A
better subcharacteristics result is indicated by a higher value. The software classes contain 1 in the corresponding
class and 0 in the other classes. The set size is 10. The results of neural network work are shown in Fig. 3.

Red cluster corresponds to software that needs full rework. Software No.5 matches this class. Yellow
cluster corresponds to software that needs large rework. Software No.6 and No.7 match this class. Blue cluster
corresponds to software that needs little rework. Software No.3, No.4 and No.9 match this class. Green cluster
corresponds to software that doesn’t need any rework. Software No. 1, No.2, No.8, and No.10 match this class.

i

4 L (S 1 A L i

-1 i} 1 2 3 4

Fig. 3. Results of clustering

At the similar training set, we test a supervised neural network based on formalized quality model
described here [3]. The test results are as follows:

- 0 =1, 0,=098,0,=095,0 =098 ,0,, =0.95. These values correspond to 100% quality, 98%
quality, 95% quality, respectively, and they mean that software doesn't need rework;

- 0,=088, Os=085,0,=0.85, Q,=0.88. These values correspond to 88% quality and 85%
quality, and they mean that software needs little rework;

- (s =0.65. This value corresponds to 65% quality. It means that software needs large rework.

These results show us that:

BicHuk XmeabHUYbK020 HAYioHA/1bHO20 yHigepcumemy, Ne5, 2018 (265) 11

Technical sciences ISSN 2307-5732

- the evaluation of software quality without considering the relationship between the subcharacteristics
of the quality model compensates for the worst values of some subcharacteristics by the best values of others. So,
the total quality value is overestimated;

- the evaluation of software quality without considering software class doesn't takes into account the
importance of quality model subcharacteristics. As a result, the total quality value is overestimated again.

So, we can conclude that the formalized software quality model described in this study is more relevant for
the problem of software quality evaluation.

Conclusions and future work. In this study we analyze and formalize conditions that characterize the
software quality model. This lets us to develop the Formalized Model of software quality.

The analysis of this model shows that to solve the problem of software quality evaluation it’s better to use
unsupervised neural networks. An ART-2 network and a Kohonen SOM are the most perspective networks of this
type for today.

For the analysis of these networks we use the training set that consists of the values of quality
characteristics and subcharacteristics. The size of this training set is 150 that match to 150 tested programs.

Based on the comparative analysis of these two networks, we conclude that the Kohonen SOM better suits
for solving the problem of software quality evaluation. So, we choose this neural network to solve this problem.

Developed model and neural network are the basis for developing a software quality evaluation system. We
expect that the using of this system automates a software quality evaluation process. As a result, this enables to
avoid subjectivity when evaluating software quality, to improve software quality and to make the software quality
evaluation process more economically profitable.

References

A Review of Software Quality Models for the Evaluation of Software Products / José P. Miguel, David
Mauricio, Glen Rodriguez. // International Journal of Software Engineering & Applications (IJSEA), Vol.5, No.6,
November 2014.

ISO/IEC 25010:2011 - Systems and software engineering - Systems and software Quality Requirements
and Evaluation (SQuaRE) - System and software quality models.

Neiromerezhnyi metod dlia vyznachennia yakosti prohramnoho zabezpechennia krytychnoho
zastosuvannia / V.Iu. Titova // Shtuchnyi intelekt. — 2012. — Ne 4. — P. 594-601.

ISO/IEC 26514:2008 - Systems and software engineering - Requirements for designers and developers of
user documentation.

Nechitka neironna merezha dlia vyznachennia vidpovidnosti rezultativ testuvannia prohramnoho
zabezpechennia krytychnoho zastosuvannia vymoham / V.Iu. Titova // Shtuchnyi intelekt. — 2013. — Ne 4. — P. 548—
554.

Cheng-Ching Chang, Ssu-Han Chen. A comparative analysis on artificial neural network-based two-stage
clustering. / Cogent Engineering. — vol. 2, 2015. - Issue 1. - https://www.tandfonline.com/doi/full/10.
1080/23311916.2014.995785

On the number of clusters in block clustering algorithms / M. Charrad, Y. Lechevallier, M. B. Ahmed, G.
Saporta. // Proceedings of the Twenty-Third International Florida Artificial Intelligence Research Society
Conference, 2010. — P. 392-397.

A new distance measurement for clustering time-course gene expression data / G. Chen, Y. Dai. //
Proceedings of the 26th Annual International Conference of the IEEE EMBS San Francisco, CA, 2004. — P. 2929—
2932.

Penensisi/Peer review : 29.9.2018 p. Hanpyxosana/Printed : 18.9.2018 p.
Penenzenr: 1.7.H., ipod. boporuk O.B.

12 Herald of Khmelnytskyi national university, Issue 5, 2018 (265)

