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ON OPTIMUM OF EM ENERGY TRANSPORT ALONG 1D NANOSCALE SIMPLE
METAL WAVEGUIDES WITH L- AND L-JUNCTIONS

Within the framework of the RPA method it was modelled the passage of an electromagnetic signal along a one-
dimensional nanoscale structure immersed in a dielectric medium - a linear array of silver nanoparticles of spherical shape.
The mentioned nanoscale 1D-array was considered as a waveguide. The signal that travels along the nanosized chain was
considered as the plasmonic wave and it was described with allowance for the Lorentz friction. The remarkable feature of
this study was the fact that one needed to calculate the efficiency of signal propagation along a linear array of nanospheres
of radius ao, which is the key parameter for nanospheres with the minimum attenuation of dipole oscillations when they
occur. For silver nanospheres the value of the “special” radius ao is about 9 nm. The center-to-center distance d between the
particles was accepted as d=3ao. The author considered a “long” nanochain: it supposed that its length is more than 500 nm.
Due to considering metal nanospheres with special radius of ao such arrays can demonstrate minimum damping when
plasmonic waves travel along the structures: through not only straight structures as well as bent ones (with L-corners) and
branched ones (with L -junctions). In this work it was calculated two characteristics of signal transmission through bent
and/or branched nanoscale waveguides - the Power Transmission Coefficients (PTCir) and the Linear Attenuation Rates
(LARL1) per 500 nm of waveguide length. The calculated value of the averaged LAR was about 1 dB per 500 nm for vacuum
medium and about 0.6 dB per 500 nm for Silica glass medium. Calculations based on the proposed model are in good
agreement with independent experimental data and obtained results are very close to the calculated data obtained by other
researchers who used the TDLDA method. This speaks certainly in favor of a more accurate method of random phase
approximation.
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Opecckas HaroHabHast akagemus cBsizu uM. A.C. TTonosa

OIITUMAJIBHOE IMPOXOXJEHUHU DM CUI'HAJIA BAOJIb OJHOMEPHOI'O BOJIHOBOJA U3
HAHOYACTHUI NPOCTBIX METAJIJIOB, BBIITIOJIHEHHOI'O C U3IrUBAMMU U PABBETBJIEHUAMU

B pamkax RPA-modeau uccaedogano npoxosicdeHue IM cueHana 80046 00HOMepHOU HAHOMACWMAGHOU cmpykmypbl (0AUHHAS
yenouka u3 HaHocgep cepebpa), nomeweHHolU 6 OJuseKmpuk. YKa3aHHass cmpykmypa paccMampueandcs Kak 60JH0800 045
He3amyxarowux NAa3MOHHbIX 801H. B modeau yuumuieanoce mpenue Jlopenya. Ocob6eHHOCMbI0 0QHHO20 MOOEAUPOBAHUS GblAU pacHembl
0415 HaHocgep paduyca as Komopblli coomeemcmeyem MUHUMAJAbHOMY 3AMYXQHUIO B03HUKAOWUX 68 HAHOYacmuyax Ouno/bHbIX
Kone6aHull. [Jas cepe6psiHblX HAHOCPHep 3Mo 0K010 9 HM. BMopbiM 8ANCHLIM NApamMempom Yenouku Gblao MexicyeHmpogoe paccmosiHue.
Pacuemvl, npogedeHHble HA OCHOBE NPeA0AHCEHHOU MODeaU, XOPOULO CO2AACYIOMCS C He3A8UCUMbBIMU IKCNEPUMEHMAAbHBIMU OAQHHBIMU.

Katoyesvle c/108a: nogepxHOCmMHble NAA3MeHHble K01e6aHUSl, HAHOMACWMAGHble 801HO800bL, hepedaia IM snepzuu.

Introduction

Experimental and theoretical studies of plasma oscillations in metallic nanoparticles, in addition to purely
scientific interest, are also of great practical importance [1-11]. In this case, as it shown by experiments [8, 12-20],
the frequency both of the plasma and the light waves may coincide, but the length of the plasma wave will be
significantly less than the length of the light wave [3, 14-21]. This fact allows to avoid the diffraction limits for light
circuits when one transforms the light signal into the plasmon-polariton wave [4, 8, 9, 13, 15-18, 21]. It is found that
one-dimensional periodic structures of metallic nanoparticles can serve as plasmon waveguides with low damping
[4, 5, 14, 15, 20-23]. This is treated as prospective for the forthcoming construction of plasmon optoelectronic nano-
devices that are not available in ordinary lightwave-guides, because of diffraction constraints. Therefore considered
chains of nanoparticles can be successfully used in modern optoelectronic devices [2, 5, 6, 8, 15, 18, 21]. When
studying plasma oscillations in nanoparticles as small as 5 nm or less, the method of quantum-mechanical density
functional theory or the “local-density approximation” method (LDA) as well the “time-dependent LDA” method
(TDLDA) are generally used [3-6, 8, 11].

The random phase approximation (or RPA-method) was developed as semi-classical scheme to describe
volume plasmons in bulk metals (for simple metals) and it can be successfully applied when studying plasma
oscillations as well in calculations concerning plasmon excitations in large metallic nanoparticles (metal spheres
with radius about 10—-100 nm) [9, 10, 19-24].

The volume plasma oscillations within metallic nanoparticles can give rise to forced oscillations on the
surface of nanoparticles [9, 10]. As it already shown [10, 19-21], after arisen in individual particles plasma
oscillations can attenuate due to the processes of electron scattering and radiation losses, through the Lorentz
friction force in particular. Of course, the study of the properties of ensembles of nanoparticles, for example linear
structures, is of the great practical interest: such structures can work as effective 1D-waveguides [1, 2, 4, 5, 8, 14,
15, 17, 20-23]. Researchers and technologists call such linear arrays of metal nanoparticles by nanoscale chains:
these chains can be composed of nanoparticles of different shapes — rods, ellipses, spheres [4, 12, 15, 18, 20, 21].

As one can see from their geometric characteristics, similar linear arrays composed of metallic nanospheres
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of radius a have two parameters — the nanosphere diameter 2 @ and the distance d between the particles (most often
it is the center-to-center distance). If we consider such a nanochain as a 1D periodic structure, then the nanoparticles
are arranged equidistantly in it, i.e. d =const, and the value of d one can call as the period of a given linear
structure.

The next question is the ratio of the distance d to the nanosphere radius @ : it is most often one considered
the ratio of d / a =3 to be closer to optimal [4, 5, 10, 13, 14, 19-23]. So, in this paper one considers exactly the
same ratio.

Now about the total length L of such a linear array, or about the length L of a metal nanochain. Let it be
that L = N -d , where N is the number of such periods of the given structure. In order to be more formal, we can
call the given array as “a long chain” if N >>1. But more often one considers that “the long nanochain” is an array

that is longer than 500 nm.

This work is aimed to calculate within the framework of RPA method some characteristics of linear L - and
L -shaped structures composed of silver nanospheres as EM waveguides placed into different dielectric medium
and then analyze obtained results. Unlike other models and approaches to the similar problems of plasmon wave
passage along 1D-arrays, this problem was solved accurately using RPA.

Let us consider a metallic nanoparticle of a spherical shape of radius a, which is placed in a dielectric
medium (£ 2 1, 1 =1) and located in an external alternating electric field. Suppose that the external magnetic field
is zero. Let the material for a given nanosphere be a simple metal. Since we are only interested in the behaviour of
conduction electrons of the metal nanosphere, we use the well known “jellium model” [24-26], which allows us to
replace the positive charge of lattice ions by a uniformly distributed charge over the entire volume of a nanoparticle

whose density is equal to 7, (r) =n,0(a—r), where n, =N, [V, ne|e| — the average positive charge density,

N, — the number of conduction electrons in this nanosphere, V' = 4’ / 3 is it’s volume, ©® stands for the
Heaviside step function.

Suppose that up to certain event (i.e., =0) the electron gas of the metallic nanoparticle was in a state of
equilibrium. Let it be at the time of #=0 a homogencous electric field appeared and immediately disappeared near
this particle. As a result of this perturbation, surface dipole plasma oscillations arise in the metallic nanosphere. The
dipole moment of the particle corresponding to these oscillations depends on time and emits electromagnetic waves,

and the radiation of the electromagnetic wave, in turn, is accompanied by the force action f, ;. of the emitted field on
the electrons of the nanoparticle. This effect is called "radiation retardation" or Lorentz friction force [10, 19, 21].
The presence of this force is equivalent to the presence of an external effective electric field £, = f L (1) / eN,,

whose source is in the center of the metallic nanosphere. Thus, in this case, at #>0, the time dependence of the
dipole moment of a nanoparticle is given by the following equation (see [21, 23]):

2 29

A A 2 R 2 37
87D(t) + ;ED(t) +w,, D) =¢,0,,aE (1), (1)
where w,,=0, / \/3€, - the intrinsic frequency of the dipole type surface plasmon; w, - the plasma

frequency of electron gas. The value 1/ 7 which enters into (1) (see [10, 19, 21]):
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is the damping of plasma oscillations, which arises as a result of the interaction of conduction electrons
with each other, as well as with the vibrations of the crystal lattice (the 1% term in (2)), and as a result of the
interaction of the conduction electrons with the surface of the metallic nanoparticle (the 2™ term in (2)). The values

vV and A 5 represent the Fermi velocity and the mean free path of the electron in bulk metal, respectively. The 31
term in (2) expresses taking into account the Lorentz friction in our considering.

Actually, here the first term of the sum of (2) (ie. v, / 24 » ) describes the interaction of plasma
oscillations with metal phonons and therefore grows with increasing temperature, but does not depend on the
dimensions of the nanoparticle. The second term (i.e. Vv, / 2a) describes the interaction of plasma oscillations with
the surface of the nanoparticle, so it depends not on the temperature but on the radius of the nanoparticle.

It can be seen from relation (2) that the value of 1/ 7 grows at @ — 0 and for @ — oo, and the attenuation
of dipole oscillations has its minimum value at the radii of metallic nanospheres equal to

_V3,[eve3

o, 2

3

a
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The minimum attenuation at @ = @, means that at @ > a,, the plasma oscillations damping increases with

increasing radius of the nanosphere, and the eigen-frequency a);,h =0,, / \/1—1/ (w,, 7 )? of the dipole

moment oscillations of a metallic nanoparticle decreases (to be more clear: it is for individual nanoparticle in a
dielectric medium). When a < a, the damping 1/ 7 value also increases: it means the eigen-frequency a);,h
decreases, but this time with a decrease of the radius a of the nanosphere [19-21]. This fact is confirmed
experimentally [19, 20]. As for the corresponding calculations for silver nanoparticles, immersed into vacuum and
Silica glass (SiO,, &,=3.8 [27]) they show, that the radius @, of minimal damping of plasmon oscillations for the

metal is about 10 nm (see Table 1).
So, below one will consider some properties and characteristics of silver nanospheres of radius a0 (see
Table 1), and then consider the waveguide efficiency of linear structures composed of nanoparticles of this size.
Propagation of surface plasma oscillations along a linear chain composed of metal nanoparticles

Consider a “long chain” composed of metallic nanoparticles of spherical shape of radius @, and placed in
a dielectric host medium with dielectric constant of £, . Suppose that these nanospheres are located along the Z axis

in such a way that their centers are at an equal distance d from each other: here is d = 3a, (see Fig. 1). Since a

nanochain more than 500 nm in length is usually considered to be “long”, for the current case the author considers
linear arrays with N =20.

Table 1
The values of the Silver nanospheres radii, which correspond to the minimum attenuation coefficients (at 300 K)
The host medium The nanosphere radius a,, nm
vacuum ( €, =1) 8.35

Let the origin of coordinates be in the center of one of the nanospheres (for example, for /=0). Suppose

that at time #=0 there are plasma surface dipole oscillations arise under the influence of an external O -shaped
electric field in metallic nanoparticles of the chain. These dipole oscillations induce a time-dependent electric dipole
moment D). Therefore, nanoparticles begin to emit electromagnetic waves, which, in turn, are absorbed by
neighbouring particles. And this process — the radiation and absorption of electromagnetic waves by the nearest
particles — is repeated many times in the described linear nanoscale array. Thus, collective excitations can propagate
along the chain, i.e. dipole waves travel from one nanosphere to another.

Let the distance d between metallic nanoparticles be much smaller than the length of the electromagnetic
wave A emitted by any particle of the chain (i.e. d / A <<1). This is equivalent to the fact that the nanospheres

which are adjacent to the selected particle will be in the dipole zone of the emitted electromagnetic wave. Here is the
equation that describes such waves [21]:

a7+f_§+a)p’h D(t):a)p’hgh(l E(t) (4)
0
The radiative losses of oscillating charges (that is plasmon dipole variations in time) can be displayed by
3
the Lorentz friction [21, 28,29]: £, = 3—3y D(?) . So, one can rewrite (4) including the Lorentz friction term:
c” ot
.29 J S e 3 (Fery
—+——+w,, |Dit)=w, ,,a (E(t)+E). (5)
2 p.h p.hh L
(at 7, Ot

Fig. 1. A schematic representation of the linear array of metallic nanospheres of radius & ,

which are immersed into dielectric and spaced by a distance of d (here d =3a 0)
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Substituting z =/ - d one can determine the dipole moment of the particle located at the / -th node of the
considered infinite chain [21, 23]:

2 too
(387 + Tﬁ% + a)i’h jDZ (ld,t) = a);h g,a’ z E.(R, R . t)+E,_ (Id0,t)+E,(d0,t)| (6a)
0 m=—co

(m#1)

2 foo
(57 + %% + a)f,,h ]Dx (ld,t) = a)f,,hghf Z E.(R,,R, O+E,(Id0,t)+E, (Id0,t)| (6b)
0 m=—oo

(m#l)

The Equations (6a) and (6b) describe the dipole-type coupling between the arranged nanospheres (Fig. 2).
As one can see, all the terms in (6a) and (6b) are “dimension-sensitive” values, i.e. they rigidly depend on the
geometric parameters of such waveguides.

E(wu,ro)\ ' T
6 63

00 -000—~~
VUv Uw

Y — —
L L
T
Fig. 2. The illustration of surface plasma oscillations propagation along a linear array
made up of spherical metallic nanoparticles: the process is based on the dipole-type coupling between the arranged nanospheres

Let us analyze the electric field “behavior” of propagating plasma oscillations caused by an external source
of the field at the frequency range near the resonance of a given system of nanoparticles. When solving these
Equations (6a) and (6b) using the Fourier transformation with the corresponding boundary conditions and nearby the

resonance frequencies, one can obtain the following equations concerning the electric field strength £ (/d,a,t)

of the travelling plasmon wave:

E.(ld,a,t) =2 @ by (D)E,. (00)-| ~~ 2= cos(u, 1)-sin(Fu+8,(F))|: (7w
3 " g, c\/g

Ex (lda a, t) = _a)lzy,thX (¢)E0x (050) X

x| 1— Rty cos(uy,l)-| sin(F.t + 6, (F.))+ Rofy cos(F.t+ 6,,(F.)) (7b)
ph P
Here (for both polarizations — z and X, i.e. the longitudinal and transverse ones) one has:
- Ey, .(0,0) — the amplitudes of the electric field strength oscillations at “starting” node, i.e. that node
of the nanoscale metallic chain where the external source of the field is located;
- uy., €[0:27];

b D=1 J@, —F ) 4R 7

0, (F.)) t 2Fx
- =arc - .
0z,x z,X g To( gz’x _F2 )

Z,X

Then letitbe: F, =P, (1 + ¢/P” ), where the following is true:

z,X

P.=w,, \1-4(a/d)’ cos(nQ. 2) P, =,, 1 +2(a/d)’ cos(n0, /2)
L 9 |36 1 0, =1- L9 g2 2V V3e, L1

0. =1- |-—=| R +L| Xy _ SR NTER
3 oz R\ Ao, cR 3 R | 4@, cR
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R= w,a / c\/g ;
- P=\O. ) — Dy |, Where @, ) = l/ﬂa)gz’x - I/Z'g is the frequency of the eigenwaves in a

1D-array composed of the same particles. And @ is such value that is true: ¢/ P . <<1 and
FZ Pzz,xz2¢'Pz,x’

zZ,X

And Her Majesty Practice asks its own questions, for example: what will the attenuation of the signal be in
case of passing of it through such branch structures as L_-corners and/or L -junctions?

Of course, when solving this problem, it is necessary to take into account such basic principles of Nature as
continuity of EM waves and the conservation laws.

In this (the current) case, these will be two rules: the continuity of plasmonic waves and the law of
conservation of the EM-energy flux [26, 30]. And it is well known fact that the efficiency of the EM-signal
travelling depends on the geometry of the certain structure, the signal frequency, and polarization directions of the
plasmonic waves that enter and exit the structure [4]. In this paper basic (and the simplest!) junctions are considered:
L -junctions (i.e. 90°-corners) and | -junctions.

A signal travels along the chain, and after reaching the particle that can be called a splitting node the signal
splits and can change its own polarization. In the figures (see insets in Table 3) this particle is marked with a circle.

Ifasignal £, = E(ld =0;a=a,;t=0) appears at the input of the structure, then its output intensity £

input output
can be calculated. Results of signal attenuation calculating are shown below. Note that the length of each bend
(“shoulders”) in these junctions is 500 nm.

Calculations of the signal damping were made for nanoscale one-dimensional waveguides: the author

considered chains of silver spherical nanoparticles as such waveguides placed into different dielectric media, for
example, in vacuum (&, =1) and Silica glass (SiO,, &,=3.8 [27]). All the parameters of signal damping are

calculated for the ambient temperature of 300 K. In the table below one can see the results of calculations of the
signal damping when it runs along linear nanosized waveguides composed of silver spherical nanoparticles of radius

a = a, (see Table 1 above) and spaced by distance of d= 3a, . Since it was considered nanoscale metallic chains

composed of nanospheres of certain size of @, , then we can expect maximum efficiency of signal travelling via the

waveguide. In his calculations the author assumed that the total length of the metallic nanochain exceeded 500 nm.

The presented data below show some characteristics concerning to the signal attenuation when it (the
signal) travels along a straight metallic nanochain (see Table 2), and the signal runs along 1D bent and branched
waveguides (see Table 3). In both cases the waveguides were placed in dielectrics.

The Table 2 shows the obtained data on attenuation of the signal intensity when it runs along the mentioned
nanosized silver waveguides for different dielectric medium. One considers two characteristics of signal
transmission for both polarization modes — the Power Transmission Coefficients (PTC,7) and the Linear
Attenuation Rates (LAR;7) per 500 nm of waveguide length. It is obviously that the signal transfers with high
efficiency along the mentioned waveguides under the given conditions.

Table 2
Attenuation of the Signal Intensity when it travels along the mentioned nanosized waveguides for different
dielectric medium: the Power Transmission Coefficient (PTCy 1) and the Linear Attenuation Rate (LARy 1)

(silver nanospheres, radius a@ = @, center-to-center distance d= 3a0, T°=300 K)

Longitudinal Propagation Transversal Propagation
The Host Medium radius = a (see Table 1) radius = a (see Table 1)
PTC,, a.u. d;,;%;m PTCy, a.u. dBL/Q)I;:;m
vacuum (&, =1) 0.894 0.97 0.934 0.60
SiO, (€, =3.8) 0.882 1.09 0.930 0.63

As for the next question — on signal travelling through curves and branches: the author had chosen three
structures and calculated the corresponding parameters — the power transmission coefficients (see Table 3).
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Table 3

The Signal Intensity when it travels along Silver nanosized waveguides through L_-corners and _L -junctions
for different dielectric medium: the Power Transmission Coefficient (PTCy 1)

(Ag-nanospheres, radius=a,, , center-to-center distance d = 3a,, T°=300 K)

by M.
The Type of Junction Vacuum (&, =1) SiO, (€, =3.8) Brongersma
etal [4]
o\ L _ E, = | 0.882 + g = | 0.894
coco00 o?—-—- 4
L
4 b E._ . o= 0.820 E_ . oupu=| 0835 0.889
x|
E & E, = | 0.882 + pu = | 0.894
Efo0) L © 7
L-2-2-X-J 6@—-—- :
L3
E Ir E_ . oupu= | 0410 E_ . oupu= | 0417 0.500
vy
I @ E, = | 0.882 + pu = | 0.894
ooooo@ocoo—"
2 E_ . pupu=|0453 E_ . ™| 0472 0.640
0|7
L _ —
¥ ¢ Ez—)xioutput = 10429 Ez—)xioutput = 10422 0.320

The Table 3 presents the calculated data concerning to the intensity of the signal that passes along the Ag-
nanochain and reaches its certain point — the special node of the waveguide which causes a reversal of the signal
polarization (in the picture the point is marked with a circle). It is assumed that up to this point and from this point
the travelling signal will pass through equal “shoulders” (pathways) which are 500 nm of length. So, “input” and
“output” represent input and output values of the signal intensity correspondingly. For comparison, one can see the
values of the calculated intensities taken from the study of M.L. Brongersma et al. [4].

Summary

In this paper it is reported on calculating of two characteristics of signal transmission through bent and/or
branched nanoscale waveguides — the Power Transmission Coefficients (PTC, ) and the Linear Attenuation Rates
(LAR, 7) per 500 nm of waveguide length.

An important feature of this study was consideration of the plasmonic waves’ passage through a 1D-array

of Ag-nanospheres of the special size — of the radius @, which provides minimum signal damping.

These two characteristics of signal transmission were found for both polarization modes — for the
Longitudinal and the Transverse ones. The computed values were obtained within RPA and they are exact solutions
of the problem. The obtained results are in good agreement with similar results of other researchers.

These calculated values of the attenuation rate of plasmon waves (see Table 2) can indicate a high
efficiency of this described above method of transmitting EM-energy along such waveguides. The author believes
that such nanoscale waveguides can be successfully used for subwavelength transmission lines within integrated
optics circuits.
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