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OPTIMAL PARTITIONING OF AN INITIAL DATASET INTO
SUBDATASETS TO BE CLUSTERED FOR GETTING RID OFF
THE DATASET SUPERFLUITIES FOR A MACHINE LEARNING TASK

As preprocessing huge datasets may consume far more resources than solving a machine learning task, an
approach to optimal partitioning an initial dataset into subdatasets is suggested. Every subdataset is subsequently clustered
in order to filter surplus objects from it. This is fulfilled based on the previously suggested approach to optimizing a dataset
by clustering it and selecting closest-to-the-centroid objects, which constitute thus a refined dataset. Firstly, it is described
how subdatasets are obtained. An initial number of objects is 2 to the power of some integer. This integer is presumed to be
greater than 6 because a dataset of less than 100 objects is counted small, and so partitioning it further is hardly reasonable.
Both the number of entries in a subdataset and the number of subdatasets of the same type also are 2 to the power of some
integers. When, secondly, the dataset hugeness is explained and formalized, a factor showing how the subdataset may be
maximally “squeezed” is introduced. This factor can be equal to from 2 up to the power integer for the initial number of
objects decreased by 1. If this factor is great, it shows superfluities in the initial dataset. Besides, it defines the number of
different types of subdatasets. For lesser values of the factor, the dataset superfluity is less, but the number of subdatasets
grows. The minimal value of the factor gives the least hugeness of the dataset, where it can be 4 times “squeezed” at the most.
Finally, the initial dataset is optimally partitioned by a squeezing factor and a certain subdataset type, at which the time
taken by clustering is minimized. A data augmentation technique can be used to achieve such a 2-to-the-power
representation. This is for the approach could be efficiently parallelized.
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B. B. POMAHIOK

BiiicbkoBo-Mopcbka akanemis [Tonpui, I'iuns

ONTHUMAJBHE PO3BUTTSI IOYATKOBOI'O HABOPY HA MIJPO3ILIA JAHUX JJIS IX OJAJBIIOL
KJACTEPHU3AIIIL 3 METOIO 3HATTS HAUIAIIKIB Y HABOPI JIJIS1 3AJAYI MAIIIMHHOT O HABYAHHSA

Ockinvbku nepednpoyecinz gequkux Habopie daHux modice nompebysamu Habazamo 6iiblie pecypcis, Hixc eupiweHHs 3adavi
MAWUHHO20 HABYAHHS, NPONOHYEMbCSL Ni0Xi0 00 0NMUMA/AIBbHO20 po36ummst 8uxidHo2o Habopy danux Ha nidposdinu. Kodxcen nidpo3din
daHux nomim Kaacmepusyemocs, wob gidgisbmpysamu HadAuwkosi 06’ekmu 3 Hb020. Lje BUKOHYEMbCS HA OCHOBI 3aNPONOHOBAHO20
paHiwe nidxody do onmumizayii Habopy daHux wasaxoMm Kaacmepusayii ma subopy Halibausxcuux do yeHmpoidie 06’ckmis, sKi, makum
YUHOM, ymeopiolomb yJockoHa/eHUll Habip daHux. [louamkose vucao 06’ekmis dopigHioe 2 y desikiil yiaiti cmeneni. I Kiabkicme 3anucis y
nidpo3dini, i kiabkicmb nidpo3dinie mozo e muny makodc dopisHrooms 2 y destkux yiaux cmenewsix. Beodumucst pakmop, sikuil nokasye, sik
MOJNCHA MAKCUMAAbHO “cmucHymu” nidpo3din. [l MeHwux 3Ha4eHb Ybo20 (akmopa HAdAUWKOo8icmb HAGOpy OaHUX MeHWda, aje
Kkiabkicmb nidposdinie 3pocmae. Hozo MiHimanbHe 3HAveMHs 03Hauae HatiMeHwy Hadauuwkosicmu Habopy daHux, de 8iH Modce Gymu

<

“cmucHymuil” @ 4 pasu woHalibinvwe. [louamkosull HAGIp OAHUX ONMUMA/ABLHO pO36UBAEMBCS 3 MAKO20 HaKmMopa CMUcKy8aHHs ma
nesHozo0 muny nidpo3dinie, 3a IKUX yac kaacmepusayii MiHimizyemucsl. [Jas 30ilicHeHHs1 8ka3aH020 NOJaHHs y popmi “2 y cmeneHi” ModcHa
sukopucmamu mexHiky 36i1bWeHHs OaHUX.

Karouosi cno8a: mawuHHe HABYAHHS, HABIp daHUX, Kaacmepusayis, po36ummsi Habopy daHux, hidHa6opu 0aHUX.

Introduction and motivation

The dataset is a crucial part in solving any machine learning task. Recently, it was shown in [1] that a
dataset may be optimized by clustering. Article [1] explains that, in a wider sense, a dataset is optimized by filtering
surplus objects from it. Namely, an approach to forming an optimal dataset (either of real-world objects or synthetic
ones) for a machine learning task was suggested in [1] for when an initial number of objects is significantly greater
than required. The proposed approach relies on an appropriately selected algorithm of clustering and a distance [2,
3]. It considers two cases of the number of objects, at which the training process is presumably close to optimal. In
the case #1, the number is unknown but included into an interval between the known integers. Then, the optimal
number of objects is determined by using the silhouette criterion [4]. Here, the optimal number of objects to be
included into the corresponding dataset is the optimal number of clusters at which the maximum of the silhouette
criterion function is achieved. When the optimal number of dataset entries is known, i. e. determined by using the
silhouette criterion or known-beforehand (the case #2), the initial set of objects is clustered, where the number of
clusters is equal to that number of dataset entries. In each cluster, the object closest to the cluster centroid is the best
one for including it into the dataset. The closeness is treated by the same distance used previously in the silhouette
criterion function and clustering [3]. The closest-to-the-centroid objects are found by minimizing the distance to the
centroid. So, the optimal dataset consists of such objects.

Article [1] also suggested that if an initial number of objects is too great, it would be reasonable to break
them into a few groups. This is crucial for accelerating the process of clustering. Thus, an optimal subdataset will be
formed from each group by using the same approach of clustering and selecting closest-to-the-centroid objects.
However, when should an initial group of objects be broken for forming optimal subdatasets? It is obvious that a
criterion for partitioning an initial dataset into subdatasets to be optimized is the amount of resources spent for the
process of clustering. In particular, it is the time which is taken by clustering. Besides, if the optimal number of
objects for optimal subdatasets is unknown, then using the silhouette criterion is too much time-consuming.
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So, the question is how should huge initial datasets be partitioned before clustering? Is it possible to know a
close-to-optimal number of subdatasets, each of which will be clustered separately? Before answering these
questions, the hugeness of a dataset must be formalized. Representation of classes and a partitioning must be linked.

Goal of the article and tasks to be fulfilled

The goal of the article is to develop an approach to optimal partitioning an initial dataset into subdatasets to
be clustered. This will provide a faster and more efficient preparation of an optimal dataset for a machine learning
task. For achieving the article’s goal, the following three tasks are to be fulfilled: 1) to describe how subdatasets are
obtained; 2) to formalize the dataset hugeness; 3) to describe how an optimal partitioning is searched.

Subdatasets and superfluities in the initial dataset
Let O be an initial number of objects. These objects constitute the initial dataset. For convenience of

partitioning the dataset into subdatasets of an equal volume, let 0 =2" by We N \{1,_6} . The reason for such W is
that a dataset of less than 100 objects is counted small, and so partitioning it further is hardly reasonable. A matter of
object representation in each class will be discussed below.

In the u -th subdataset type, let integer N, be a number of objects, at which the training process is
presumably close to optimal. If there are initially, say, O =1024 objects, then such a dataset can be partitioned into
the following versions of subdatasets: 1) two subdatasets by 512 objects; 2) four subdatasets by 256 objects; 3) eight
subdatasets by 128 objects; ...; 7) 128 subdatasets by eight objects. Surely, the case when no partition is reasonable
is additionally included, where, potentially, N, e {256, 512} by holding at a kind of principle of double-integer

uncertainty [5]. For the case of two subdatasets, N, € {128, 256} and N; € {64, 128; for the case of four subdatasets,

and so on. And it is reasonable that N;e {2,_4} because of only eight objects in each of 128 subdatasets. Thus, every

subdataset is at least 2 times “squeezed” (i. e., optimized or filtered). At the most, it may be 4 times “squeezed”.
However, this has been just a single example of how the dataset is partitioned (eight cases including the
case with no partition by u#=1). Here is another example (for the same initial set of 1024 objects), where every

subdataset is from 4 to 8 times “squeezed”: 1) two subdatasets by 512 objects and Nze{64,128}; 2) four
subdatasets by 256 objects and N3e{32, 64}; 3) eight subdatasets by 128 objects and N4e{l6, 32}; -
6) 64 subdatasets by 16 objects and N; € {m . The case when no partition is reasonable comes at N, € {128, 256} .

Continuing on the same logics, there is a case of an ultimate squeezing, where the initial dataset is not
partitioned at all but only from 2 to 4 best objects are filtered out. In other words, here the dataset is from 512 down
to 256 times “squeezed”. Formally, there is the single subdataset type represented singly by the initial dataset, and

N, e {m for such a case.

Henceforward, a factor

ze{2, log,0-1} or ze{2, W-1} (1)

shows how the subdataset may be maximally “squeezed”: the number of squeezing times is equal to 2-. Integer 2°
is the maximally possible squeezing coefficient. If factor (1) is great, it shows superfluities in the initial dataset.
Besides, it defines the number of different types of subdatasets, which is equal to W —z. The total number of

subdatasets of the u -th subdataset type is 2“" by u=1, W —z. Every subdataset of u -th type has Q, =Q/2""

entries. For the three cases, exemplified above, factor z is equal respectively to 2, 3, and 9. Moreover, the number
of objects, at which the training process is presumably close to optimal for every subdataset of the u -th type, is

Nue{N<“> NOL by N =271 and NE =2NY for u=1, W-z )

min > min ma min

by factor (1). Obviously, setting z =W —1 may serve as an evidence of hugeness of the dataset. For lesser z, the
dataset superfluity is less, but the number of subdatasets grows. Factor z=2 gives us the least hugeness of the
dataset, where it can be 4 times “squeezed” at the most. Superfluity and hugeness imply here much the same.
Searching for an optimal partitioning
Obviously, rationality of the partitioning depends on the number F of object features. Therefore, the time
¢t which is taken by clustering can be considered as a function #(z,u, F). Then the initial dataset is optimally

partitioned by the parameters

[u" (F) z"(F)]e argzezgf%{u%t(z,u,F)} 3)

where u”(F) is the optimal subdataset type, and z"(F) is the optimal factor for squeezing the subdatasets by the
given number of object features, and Z c {2, W —1; is an admissible subset of the squeezing factors suitable for the

given task. Occasionally, if the number of object features can be varied, then, for instance, it is
Fe{oFmn}i™ by O e N\{I} 4)

where Fy,;, is a minimal number of features (see Figure 1 along with Figure 2 showing influence of this number).
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Figure 1. An example of the time spent for the clustering by varying the number of object features according to (4), where z=3
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Figure 2. The added example of the time spent for the clustering by varying the number of object features according to (4), where z =2
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The example visualized above stands for not much superfluities in the initial dataset. It solves problem (3)
for Z ={2,3} and any number of features from 16 to 128: 32 datasets by 64 entries are clustered into 8 to 16 clusters

faster (see Figure 1 to the right) than 64 datasets by 32 entries are clustered into the same interval of clusters (see
Figure 2 to the right). Influence of the number of object features on the time spent for the clustering is minor.
Discussion and conclusion
If the dataset represents D classes, with d; objects in the i -th class, then they should satisfy a statement

D

_min__{max{d;/d;,d;/d;}} by >.d,=Q=2". (5)
i=1, D, k=1, D pax

If initially Q # 2", this can be achieved by using a data augmentation technique [6, 7] allowing also to achieve

approximately equal representation of classes. Similar equal representation of each class should be achieved for
every subdataset, where the principle in (5) can be used. In the naive way, the classes must be “allocated” randomly.

The proposed 2" -approach is intended to be efficiently parallelized. It relies on statement (5) holds,
whereupon problem (3) is solved numerically. After subdatasets are determined, the approach of clustering and
selecting closest-to-the-centroid objects [1] will filter surplus objects from every subdataset. Then, the optimized
subdatasets are gathered into the refined dataset, which is considered to be optimal itself for a machine learning task.
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