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CONCERNING THE MATTER OF THE (IM)PRACTICALITY  

OF SOLAR FORECASTING MODELS 
 
The availability of solar radiation data is crucial for determining the appropriate sizing of solar energy systems. As 

solar energy is widely used in electricity generation, numerous research efforts have been dedicated to developing models 
capable of estimating solar irradiance from various perspectives. These prediction models can be categorized as satellite-
based, regression-based, statistical, artificial intelligence-driven, or hybrid in nature. While significant progress has been 
made during the development of these models, there are concerns among some researchers regarding their practical 
applicability. In this study, we aim to provide a comprehensive overview of existing solar irradiance prediction models and 
conduct a prospective and critical analysis of their practicality and accessibility based on the existing literature. Special 
emphasis is placed on the importance of researchers meticulously studying the current gaps in research and actively working 
to enhance and implement promising studies to overcome any shortcomings in the prediction models. It is worth noting that 
generalizing solar irradiance prediction models for locations without direct measuring instruments poses a challenging task. 
Thus, this article contributes valuable insights to researchers, practitioners, investors, and all stakeholders interested in 
advancing and utilizing solar irradiance prediction models to support the development of efficient solar energy systems. By 
shedding light on the strengths and weaknesses of existing models, we aim to facilitate more accurate and reliable solar 
energy estimations, thereby encouraging the broader adoption of sustainable and renewable energy sources. Ultimately, this 
research seeks to foster the growth and successful implementation of solar energy systems on a global scale. 
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МАТУШКІН ДМИТРО 
Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» 

 

ЩОДО ПИТАННЯ (НЕ)ПРАКТИЧНОСТІ МОДЕЛЕЙ СОНЯЧНОГО ПРОГНОЗУВАННЯ 
 

Необхідність наявності даних щодо сонячного випромінювання є необхідною у визначенні розмірів об’єктів сонячної 
енергетики. З огляду на широке застосування сонячної енергії для виробництва електроенергії, багато досліджень спрямовані на 
розробку моделей, що здатні оцінювати сонячне випромінювання з різних перспектив. Моделі прогнозування сонячного 
випромінювання можуть бути супутниковими, регресійними, статистичними, заснованими на штучному інтелекті або 
гібридними. Незважаючи на те що, під час розробки цих моделей отримані значні успіхи, деякі дослідники мають сумніви у їхній 
практичній застосованості. У цьому дослідженні робиться огляд існуючих моделей прогнозування сонячного випромінювання, а 
також надається перспективний і критичний аналіз стосовно того, наскільки вони є практичними та доступними з 
літературного погляду. Підкреслюється, що дослідники мають ретельно вивчити прогалини в дослідженнях, які є наявними, аби 
вдосконалити і впровадити деякі перспективні дослідження для подолання недоліків у моделях прогнозування. Важливо 
зазначити, що узагальнення моделей прогнозування сонячного випромінювання для місць, де немає вимірювальних інструментів, 
є складним завданням. Отже, ця стаття містить цінний інформаційний внесок для дослідників, практиків, інвесторів та всіх 
зацікавлених у розвитку та використанні моделей прогнозування сонячного випромінювання з метою підтримки розвитку 
сонячної енергетики. 

Ключові слова: відновлювана енергетика, сонячна енергетика, сонячне випромінювання, модель глобального 
сонячного випромінювання, модель прогнозування. 

 

Introduction. 

Obtaining historical data on solar radiation and its characteristics holds significant importance for various 

fields of human activity, such as hydrology, agriculture, and energy sector. The modern progress in using solar 

energy for electricity production and reducing the cost of solar technologies makes it a primary component of the 

world's energy complex. It is predicted that by 2040, solar and wind energy will account for approximately 48% of 

the world's electricity production [1]. According to statistics, the capacity of solar power plants has increased by 

approximately 100% from 2009 to 2015 [2] due to the widespread deployment of grid-connected and off-grid solar 

systems, as well as the development of rooftop solar photovoltaic installations. Solar resources that reach the earth 

are important for various applications, such as photosynthesis, heating, and electricity production through 

photovoltaic cells. This resource is renewable and almost everywhere available, although its flow is random and 

periodic. In the light of the need to decarbonize electricity systems, the use of solar resources becomes an integral 

part of the energy strategies. For the efficient use of solar technologies, it is important to have accurate data on solar 

radiation that reaches a specific land surface. 

Such data is essential for determining the dimensions of energy systems operating on solar panels, as it 

provides relevant information about the quantity, duration, and structure of solar energy received at a specific 

location on the Earth's surface [3]. These data help expand and improve research and utilization of solar energy. To 

obtain such data, specialized equipment is typically deployed to conduct measurements, which are then remotely 

transmitted to a data processing center, where they are analyzed and stored. However, due to the high cost of 

equipment, challenges in calibration, and ongoing maintenance expenses, many data recorded at data processing 

stations, especially in developing countries, are often limited, faulty, or inaccessible [4]. The utilization of such data 
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poses numerous challenges and uncertainties in determining the dimensions of energy systems. 

To mitigate the uncertainties associated with limited data, various algorithms and models have been 

proposed in the literature to estimate solar irradiance. These algorithms and models assess solar irradiance based on 

existing meteorological data, such as minimum and maximum temperature, relative humidity, hours of sunshine, and 

precipitation, available for the considered location(s). Some models even incorporate the interdependence between 

meteorological factors and solar radiation. Over the past few decades, different methodologies have been developed 

for solar irradiance forecasting, including satellite-based models, regression models, statistical models, artificial 

intelligence models, and hybridization of some of these models [5]. 

From the aforementioned points, it is evident that the amount of solar irradiance reaching the Earth's 

surface depends on the climatic characteristics of the location. This particularity has driven the development of 

various models capable of forecasting solar irradiance under specific local climatic conditions. Furthermore, some 

researchers have focused on improving existing models in terms of forecast accuracy and handling non-linearity. 

However, some thoughts have raised doubts about the ability of these models to be generalized. These concerns 

have led to the emergence of numerous solar irradiance prediction models that require proper contextualization for 

adequate understanding. While significant progress has been made during the development of these models, some 

researchers have questioned their suitability for practical applications. To address these concerns, this article 

provides a comprehensive review and perspective on the practicality or limitations of solar irradiance prediction 

models available in the literature. Additionally, research gaps that are desirable and necessary for future exploration 

are identified. It is expected that addressing these research gaps properly will contribute to the development of 

models or measurement equipment that effectively overcome the limitations of existing models. 

Brief description of solar radiation prediction models 
Earth's solar irradiance is influenced by various weather conditions that vary over time. These conditions 

serve as crucial factors for forecasting solar irradiance and are used as regressors in prediction models. Different 

types of models have been developed for solar irradiance forecasting, which can be classified into four main groups: 

regression-based, statistical, artificial intelligence-based, and satellite-based models, as illustrated in Fig. 1 [5]. 

 

 
Figure 1. Classification of models developed for solar irradiance forecasting 

 

Satellite-based models 

Solar irradiance forecasting on the Earth's surface can be achieved using satellite data, utilizing imagery 

from satellites and other remote sensing data. By analyzing the intensity of cloud colors, the illumination of the 

Earth's surface can be estimated. However, satellite images have lower spatial and temporal resolutions compared to 

ground-based sources, leading to reduced short-term forecast accuracy. Thus, such images are more commonly used 

for long-term predictions. 

To construct cloud motion vectors using satellite imagery, a concept similar to that used in sky image 

analysis is employed. Cloud images are formed based on visible and/or infrared images obtained from satellite 

sensors. One of the advantages of this approach is that the spatial scale of satellite images is significantly larger [6]. 

The cloudiness index (considered proportional to cloud optical density) can be calculated with reasonable accuracy. 

Cloud motion vectors are determined using successive satellite images [6]. For predicting cloud cover for the next 2 

hours, statistical methods based on conditional probabilities are used, and by minimizing the size of individual 

image elements, it is possible to make forecasts even up to 6 hours ahead. The obtained cloud motion vectors are 

also used to improve the results of numerical forecasting models [6]. 

Statistical models 

Statistical models are based on the utilization of historical data and the establishment of correlation 

dependencies among them. These models do not require the inclusion of physical atmospheric parameters and focus 

on the analysis of digital data. To forecast solar irradiance, relevant data must first be collected. Such data is 

typically gathered using meteorological instruments on the ground, satellite imagery, or numerical models that 
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simulate the behavior of the Sun and its influence on Earth's atmosphere. 

The application of statistical methods relies on the quality of the available historical data. Selecting a time 

series requires adherence to specific rules, such as having observation results spanning from the beginning to the end 

of the time series, regularity in the time intervals, and the absence of missing data. 

Forecasts must undergo thorough verification, especially when there are correlations between different 

trends or the potential for a "discontinuity" between the past and the future. 

One of the subcategories of statistical models is the time series approach [7], where the dynamics of 

variables are ordered over time and used to build trends and forecast future values [8]. A simple regression model is 

represented as [9]: 

 0 1 1 i iy X X        , (1) 

where y  is the target variable (the predicted value); 
1 iX , , X  are independent variables; 

0  is the bias coefficient; 

1 i, ,    are coefficients of independent variables;   is the error term (the residual). 

The coefficient 0  is the predicted value of y  when the X  is 0. 

A multidimensional time series involves the numerical analysis of multiple variables in the time domain. The 

independent variable includes two types of data: exogenous data (influence data) and response data (response to the 

influence). The multidimensional model is described using a matrix that contains information about the relationships 

between variables and their changes over time [10]: 
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, (2) 

One of the drawbacks of the time series approach to forecasting is that forecast errors appear to increase for 

short-term predictions. In the literature, some time series models incorporate Autoregressive Moving Averages, K-

Nearest Neighbors predictors, and Persistence Models [5]. 

Regression models 

For forecasting solar irradiance, regression models are frequently used to establish correlations between 

various meteorological variables and solar irradiance measurement data. One of the key advantages of these 

regression models is that the instruments used to measure certain meteorological parameters, which serve as input 

data for the models, are readily available. This ensures data accessibility for most regions and locations [6]. 

However, regression models have a limitation in that they may not accurately capture the nonlinear nature of solar 

irradiance in their predictions. This limitation has been identified in the literature as one of the main drawbacks of 

these models [7]. Consequently, when forecasting solar irradiance, the accuracy of regression models may be lower 

compared to other types of models. 

Solar irradiance forecasting employs various regression models, among which the following can be 

highlighted: 

 Cloud-based models [11-13]: In these models, cloud cover is utilized as a significant input variable, as 

clouds have a substantial impact on the amount of solar irradiance reaching the Earth's surface. 

 Sunshine-based models [14]: Such models use data on sunshine duration as an input parameter for solar 

irradiance forecasting. 

 Temperature-based models [15]: In this type of model, temperature is used as an input variable, as it can 

also influence the magnitude of solar irradiance. 

 Hybrid models [5]: Some forecasting models combine cloud cover, sunshine duration, temperature, and 

other meteorological data such as atmospheric pressure, solar elevation angle, precipitation, relative humidity, 

atmospheric pressure, and wind speed to achieve more accurate predictions. 

In [16], it is noted that among regression models, the most advanced and widely used is the model based on 

cloud cover, sunshine duration, and temperature. This model takes into account the influence of important 

meteorological parameters, enabling more accurate solar irradiance forecasts. 

Sunshine-based model 

The solar irradiance forecasting model based on sunshine duration establishes a relationship between the 

hours of sunshine recorded at the meteorological station and the extraterrestrial irradiance [17, 18]. Mathematically, 

the original model is presented as follows [10]: 

 
t

0 1
t ,0 0

G S
B B

G S

 
   

 
, (3) 

where tG  is the mean global solar irradiance, t ,0G  is the monthly average daily global irradiance under clear sky 

conditions, S  is the mean number of hours of sunshine, 0S  is the mean duration of the day, 0B  and 1B  are 

parameters of the model determined using statistical methods of analysis and regression. 
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The model expresses the statistical relationship between a variable representing the ratio of the monthly 

average daily hours of bright sunshine to the monthly average maximum possible daily hours of sunshine 
c

S
S

 
 
 

, 

and a variable representing the ratio of the monthly average daily global irradiance to the monthly average daily 

global irradiance under clear sky conditions t

t ,0

G
G

 
 
 

 [10]. 

The duration of sunshine is typically accessible and measured using appropriate instruments at 

meteorological stations. On the other hand, the extraterrestrial irradiance is obtained from the following expressions 

[10, 19]: 
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The latitude of the selected location is denoted as  , n  is the day of the year starting from January 1. The 

value of the solar constant is denoted as DI  and it is equal to 1367 W/m². 

Cloud-based models 

Clouds influence the distribution and scattering of solar radiation, which in turn alters weather conditions 

and impacts the amount of solar radiation reaching the Earth's surface [16]. Meteorological satellites are used to 

obtain data on clouds, and they perform measurements for various types and layers of clouds [20]. The obtained 

cloud data can be utilized in the development of different models that allow for the estimation of global solar 

radiation at the Earth's surface. 

One of the drawbacks of such models can be the presence of different cloud layers with varying movement 

characteristics. For instance, clouds at higher altitudes may be partially obscured by clouds at lower altitudes. Such 

differences in cloud movement can impact the accuracy of the forecast. The actual forecasting time also depends on 

the speed and altitude of cloud movement. Fast-moving and low clouds may only remain in the field of view for a 

few minutes, while high and slow-moving clouds can remain visible for 30 minutes or even longer. Common 

forecast horizons range from 5 to 20 minutes. 

Indeed, even if the size and speed of clouds can be accurately measured, the forecast accuracy will depend 

on how quickly the cloud field shifts relative to its initial position, which is determined by vectors of their 

movement (such as development, dissipation, and other factors) [21]. Such complexities can lead to deviations in 

forecasts and reduce the precision of solar radiation forecasting. 

Temperature-based models 

The measurement instruments required to collect sunshine and cloud data can be expensive and may not be 

commonly available in all weather stations, unlike temperature measuring instruments. As a result, accessing 

reliable sunshine and cloud data is often challenging. In response to this limitation, researchers have developed 

models that utilize readily available meteorological data, such as air temperature, to estimate solar radiation. These 

empirical models use daily minimum and maximum air temperatures as inputs and calculate solar radiation as 

outputs. In temperature-based models, it is assumed that the fraction of extraterrestrial radiation reaching the ground 

is directly related to the difference between maximum and minimum temperatures [16]. 

Expression (6) serves as the foundation for many temperature-based models [10]. 

  
0,5t

1
t ,0

G
A T

G
 , (6) 

where T  represents the difference between the daily maximum temperature ( maxt ) and the daily minimum 

temperature ( mint ). 

Models based on artificial intelligence 

Techniques of Artificial Intelligence (AI) are used to create machines that mimic biological processes. 

Solar radiation forecasting using AI methods involves the utilization of Machine Learning algorithms [22, 23], 

which assess historical meteorological data, such as cloud cover, temperature, and wind speed, to predict future 

levels of solar radiation. Among the AI algorithms widely employed for solar radiation prediction are Artificial 

Neural Networks [24, 25], Decision Trees [26], Support Vector Machines [4] etc. Additionally, other methods like 

Deep Learning [27-28] and Convolutional Neural Networks are being investigated for solar radiation forecasting 

[28, 29]. These methods show potential in providing more accurate and sophisticated predictions of solar radiation. 

AI models for solar radiation forecasting encompass various approaches, among which the following are 

the most popular: 

 Artificial Neural Networks (ANNs): ANNs simulate the biological nervous system of the human brain and 

enable understanding complex relationships between input and output data. They consist of three layers - input, 
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hidden, and output layers [30]. ANNs can forecast solar radiation without making specific assumptions about the 

underlying process, utilizing neurons to establish connections between variables. 

 Recurrent Neural Network Models (RNNs): These models are specifically designed to handle sequential 

data, such as time series. They are trained on historical data to predict future solar radiation values based on past 

observations. 

 Random Forest Models: These models employ an ensemble of decision trees to forecast solar radiation. 

They are trained using various meteorological parameters and past observations as input data and then derive the 

final prediction by averaging the values produced by each tree. 

 Support Vector Machines (SVM): These models can forecast both linear and nonlinear data. They are 

trained on historical data to obtain an optimal boundary that separates solar radiation into two classes. 

The application of ANNs offers numerous advantages, such as self-learning ability, flexibility, 

compactness, and the capability to model complex nonlinear processes without assuming explicit relationships 

between input and output variables [31]. However, they also come with certain drawbacks, such as overfitting, local 

minimal tendencies, poor generalization, which can impact model accuracy and complexity [32]. To enhance the 

performance of ANNs in solar radiation forecasting, they can be combined with global algorithms [32, 33]. 

In general, AI models, such as ANNs, RNNs, Random Forest Models, and SVMs, are notable for their 

ability to provide accurate real-time forecasts, making them valuable for optimizing energy generation systems 

utilizing solar technologies. 

Performance assessment: predictive models and indicators of forecast quality 

Performance metrics provide a quantitative assessment of the accuracy and reliability of solar radiation 

forecasting algorithms, enabling model comparisons. These evaluations help determine which models are most 

suitable for specific applications, contributing to the overall improvement of solar radiation prediction quality. Table 

1 presents a comparison of the effectiveness of various forecasting models, each with its own advantages and 

limitations. 

 

Table 1 

Evaluation of the effectiveness of the considered models for solar radiation forecasting 

Forecasting Model Strengths Weaknesses 

Satellite-based 

Models 

 Capture large-scale weather 

patterns; 

 Good spatial coverage 

 Limited accuracy in capturing local weather 

phenomena; 

 Dependence on the quality of satellite data; 

 Struggles with complex atmospheric conditions 

Statistical Models 

 Can capture nonlinear 

relationships and complex 

patterns; 

 Better accuracy compared to 

regression models 

 Requires significant and diverse training 

datasets; 

 Model selection and tuning are crucial for 

optimal performance 

Regression Models 

 Relatively simple to implement; 

 Acceptable accuracy for short-

term forecasting 

 Limited effectiveness during significant weather 

variations or unexpected fluctuations; 

 Constraint in solving complex nonlinear 

relationships 

Artificial 

Intelligence Models 

 Can automatically learn complex 

patterns and dependencies; 

 Often outperform traditional 

statistical models 

 Requires large volumes of training data; 

 Demands significant computational resources; 

 Interpretation and explainability can be 

challenging 

Hybrid Models 
 Combine strengths of individual 

models 

 Effectiveness can vary depending on the 

specific combination and integration 

methodology 

To assess the effectiveness of solar radiation forecasting models, several accuracy metrics are commonly 

used. Among these indicators, the following can be highlighted: Mean Absolute Error, Root Mean Squared Error, 

Mean Bias Error, Mean Percentage Error, Mean Absolute Percentage Error, R-squared (R2), and Forecast 

Benchmarking. Additional details regarding these metrics are provided in Table 2. 

Although satellite models offer wide spatial coverage [34], their accuracy suffers from the influence of 

cloud cover and atmospheric conditions. Consequently, satellite models tend to exhibit higher values of MAE, 

RMSE, and MAPE. On the other hand, regression models, while easy to implement and interpret, often fail to 

adequately capture complex nonlinear relationships and rapid weather changes, leading to moderate performance 

metrics. Regarding statistical models, they are also straightforward to use and computationally efficient, but during 

rapidly changing weather conditions, they may suffer from insufficient accuracy. Certainly, performance metrics for 

statistical models, such as MAE, RMSE, and MAPE, often fall within a moderate range. Nevertheless, despite their 

limitations, statistical models can be valuable for short-term forecasts when relevant historical data is available. 

Other models, such as those based on AI, typically demonstrate superior results in identifying complex patterns and 
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relationships. These models often exhibit lower values of MAE, RMSE, and MAPE, indicating higher accuracy. 

Hybrid models, which combine multiple forecasting methods and leverage the advantages of different approaches, 

also garner significant attention. Research has shown that hybrid models tend to achieve improved efficiency, as 

reflected by lower values of MAE, RMSE, and MAPE compared to individual models [35]. For instance, a study 

described in [36] demonstrated that employing Deep Learning-based optimization in hybrid solar radiation 

forecasting models can lead to achieving a maximum R2 value of 100%. 

 

Table 2 

Performance metrics used for evaluating solar radiation forecasting models 

Performance 

Metric 
Description 

Mathematical 

Expression 
Ideal Value 

Mean 

Absolute 

Error (MAE) 

MAE calculates the average absolute difference 

between forecasted ( iŷ ) and actual values ( iy ). 

This metric measures the average magnitude of the 

forecast error and is widely used in solar radiation 

forecasting evaluations 

N

i i
i 1

1
ŷ y

N


  0 

Root Mean 

Squared Error 

(RMSE) 

RMSE calculates the square root of the average of 

squared differences between forecasted and actual 

values. It is more sensitive to large errors than 

MAE and offers an overall assessment of model 

performance 

 
N

2
i i

i 1

1
ˆy y

N


  0 

Mean Bias 

Error (MBE) 

MBE indicates the average forecasting error, 

reflecting the systematic tendency of the 

forecasting model to under- or over-predict. This 

metric helps understand the model's systematic bias 

 
N

i i
i 1

1
ŷ y

N


  0 

Mean 

Absolute 

Percentage 

Error (MAPE) 

MAPE is commonly used as a loss function for 

regression and model evaluation due to its intuitive 

measure of relative error. In solar forecasting, it is 

normalized by the nominal power to facilitate 

meaningful comparisons 0P  

N
i i

0i 1

ˆy y100

N P



  0 

R-squared 

(R2) 

R-squared defines the ratio of the variance in actual 

values that can be predicted based on forecasted 

values. It indicates how well the model fits the data 

and explains the variation in solar radiation 

 

 

2
ii

2
ii

ˆy y
1

y y









 1 

Forecast 

Benchmarking 

Forecast benchmarking compares a model's 

improvement to a benchmark relative to the best 

possible forecast without errors 

forecast

perfect  forecast

Metric
1

Metric
  

The closer the 

value to 1, the 

better the model's 

effectiveness 

The (im)practicality of solar forecasting models 
An overview of contributions presented in the scientific literature regarding solar radiation forecasting 

models based on regression indicates the effectiveness of such approaches in determining solar radiation with a 

significant level of accuracy. Regression models have successfully established a strong and positive relationship 

between measured meteorological data and solar radiation in various geographical regions. However, in [37], it is 

noted that regression models can only be deployed and applied in locations where accurate data on solar radiation 

and other relevant climatic data are guaranteed. It is important to highlight that instruments for collecting data on 

solar radiation have high costs and are usually only available in developed countries that can afford them. In 

countries where measuring devices capturing solar radiation data exist, such devices are only available at a limited 

number of stations [38]. Such constraints raise doubts about the generalizability of regression-based solar radiation 

forecasting models. Real-time data collection from measurement devices can create problems concerning the use of 

regression models in such locations. Crucial questions arise: 

1) How useful can solar radiation models be in places where meteorological instruments are available for 

measuring radiation and other meteorological data? 

2) What is the contribution of solar radiation forecasting models in regions where measuring devices are 

not accessible? 

These questions cast doubt on the practical applicability of regression-based solar radiation forecasting 

models, which occupy a significant place in research within the scientific community. Clearly, the majority of 

researchers in this field are improving initial models based on limited measurement data. 

To address the provided questions, it is necessary to thoroughly assess the effectiveness of solar radiation 

forecasting models at a practical level. In cases where solar radiation data is unavailable due to instrument 

malfunction or technical maintenance, solar radiation forecasting models can be employed to correct for these 

missing data [37], thus generating synthetic data. However, the purposefulness of data correction must be carefully 

considered. Introducing solar radiation data with missing points into the energy generation model may lead to 
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various levels of uncertainty in the obtained results. Although the consequences may be insignificant in small-scale 

energy system projects, the severity of uncertainties increases as the size of the designed system grows. For 

example, if data absence results in a 5% error for a 5 kW and 1 MW solar energy systems, operators or energy 

companies would need to compensate for 0,25 kW and 50 kW, respectively. Nevertheless, the technical, legal, and 

economic burden caused by a 50 kW deficit would be significantly greater than a loss of 0,25 kW. Considering these 

factors, it appears that solar radiation forecasting models could play a vital role in providing synthetic data to correct 

for missing data caused by instrument malfunction or failure [37]. 

With the increasing deployment of municipal solar energy systems, the demand for accurate energy 

generation forecasting in power grids is growing. Consequently, more attention is being directed towards solar 

activity forecasting models. Essentially, solar activity forecasting models provide tools that operators can use to 

assess and balance energy production and consumption in electric grids composed of various energy sources, 

including solar technologies. Adequate solar activity forecasts enable operators to efficiently dispatch different 

controllable generating units, ensuring the necessary availability, stability, and flexibility critical for optimizing the 

electric grid's operations. 

Therefore, from the perspective of energy production forecasting, solar activity forecasting for periods 

ranging from daily to minute intervals is crucial for the efficient management of operational energy systems, 

particularly those integrated with solar technologies. This is because solar radiation exhibits variable characteristics 

and requires accurate forecasting to ensure the stability and reliability of the electrical grid. Hybrid energy systems, 

combining solar technologies with other sources, greatly benefit from precise solar activity predictions to optimize 

their performance and maintain grid stability. 

In addition to their practicality, as mentioned earlier, solar radiation forecasting models find extensive 

applications in the financial aspects of solar energy projects. For instance, large-scale solar energy projects often 

require financing from financial institutions at competitive rates. Securing such funding depends on a thorough analysis 

of cash flows, demonstrating that the project can ensure a stable income stream throughout the loan term. Solar 

forecasting models can assist companies in effectively planning and managing their projects. Thus, the quality of solar 

resources and the accuracy of solar radiation forecasting are critical factors influencing the possibility of obtaining 

competitive credit financing for solar energy projects. Reliable solar radiation data is an essential component for cash 

flow analysis and project viability assessment. Lenders also require a verification dataset of solar radiation, confirming 

the potential income level that the project can generate. Accurate solar radiation forecasts at different time scales, 

including hourly, daily, monthly, and yearly forecasts, are key requirements for determining project economic viability. 

Overall, solar radiation forecasting models play a significant role in contributing to the success of solar energy projects 

by enabling efficient energy grid management and ensuring reliable project financing. 

During the literature search, significant gaps in research related to solar radiation estimation in locations 

without measurement instruments were identified. Nevertheless, the use of data-driven AI methods showed promise 

in solar radiation forecasting for such areas [39]. Researchers utilized data-driven methods that allowed them to 

handle situations where real models were impractical or unavailable to obtain information about solar radiation in 

locations without direct measurements. In [39], the feasibility of obtaining solar radiation data from places without 

measurements was investigated, and a forecasting model using the SVM method was developed. This model could 

estimate and establish the relationship between meteorological variables and global solar radiation for locations with 

available data and predict global solar radiation for places where data were absent in the model's training data. Even 

when testing the model on new data for an another location not included in the training dataset, the model 

demonstrated an accuracy of 95% and MAPE of 5,43%. In another study [40], a different approach was presented, 

where solar radiation data measured at various locations with similar radiation patterns were used to train accurate 

forecasting models for the target location. A multi-dimensional space was constructed based on measurements of 

humidity, temperature, and satellite data, where each location was interconnected with a point in this space. A 

directionality diagram-based metric was then utilized to compare the relationships between measurement locations. 

Consequently, "candidate sites" were identified, providing data for training the forecasting model for the target 

location. The results of these studies emphasized the practicality of solar radiation forecasting models in locations 

without measurement instruments, warranting further detailed exploration [40]. 

Conclusions 
Solar radiation forecasting models play a vital role in the successful integration of solar energy into the 

energy balance and the planning and operation of solar technologies. While their significance is clear, challenges 

exist in developing generalized models for regions without measurement instruments. Nevertheless, promising 

progress has been made in this area, and further research efforts should be directed towards creating effective 

models for such regions. 

The development and implementation of advanced solar radiation forecasting models require substantial 

resources, which can be particularly challenging for organizations operating in developing regions with limited 

means. To make these models accessible in resource-constrained countries, it is crucial to focus on the production of 

cost-effective devices for measuring solar radiation. 

Additionally, the accuracy of solar radiation forecasts is crucial for rational decision-making regarding 

electricity generation and grid management. Thus, research efforts should concentrate on enhancing the precision of 

these models through the availability of real-time data on solar radiation levels and weather conditions. 

In summary, solar radiation forecasting models are essential for the successful integration of solar 
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technologies into the energy sector, leading to a more efficient transition to green energy and a sustainable future. 

However, ensuring their practical application and accessibility worldwide requires further research and 

technological advancements. 
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