Надіслати статтю
вул. Інститутська 11, м. Хмельницький, 29016

МЕТОД ВИБОРУ КОНКУРЕНТНОГО ТОВАРУ НА ОСНОВІ ЕМОЦІЙНОГО ЗАБАРВЛЕННЯ ВІДГУКІВ

METHOD OF CHOOSING A COMPETITIVE PRODUCT BASED ON THE EMOTIONAL COLOR OF THE CALLS

Сторінки: 86-88. Номер: №6, 2021 (303) 
Автори:
ЛІП’ЯНІНА-ГОНЧАРЕНКО Х. В.
Західноукраїнський національний університет
ORCID ID: 0000-0002-2441-6292
e-mail: xrustya.com@gmail.com
КОМАР М. П.
Західноукраїнський національний університет
ORCID ID: 0000-0001-6541-0359
e-mail: mko@wunu.edu.ua
ЛЕНДЮК Т. В.
Західноукраїнський національний університет
ORCID ID: 0000-0001-9484-8333
e-mail: tl@wunu.edu.ua
ГРАМЯК Р. М.
Західноукраїнський національний університет
ORCID ID: 0000-0001-8698-0377
e-mail: fear3171@gmail.com
Khrystyna LIPIANINA-HONCHARENKO, Myroslav KOMAR,
Taras LENDYUK, Roman GRAMYAK
West Ukrainian National University

DOI: https://www.doi.org/10.31891/2307-5732-2021-303-6-86-88
Рецензія/Peer review : 23.11.2021 р.
Надрукована/Printed : 30.12.2021 р.

Анотація мовою оригіналу

У статті розроблено інтелектуальний метод вибору конкурентного товару на основі емоційного забарвлення відгуків, що ділиться на три блоки: парсер відгуків, визначення емоційного забарвлення та класифікація відгуків.
Ключові слова: товар; відгуки; парсер; емоційне забарвлення тексту; класифікація; машинне навчання.

Розширена анотація англійською мовою

Other people’s opinions have always been an important piece of information for most of us in the decision-making process. The interest shown by users to online reviews and comments, as well as the potential impact of these comments on issues in discourse and decision-making, make them pay attention to this aspect of online activity. Finding the best products for sale is one of the most important stages in the process of creating a profitable company. That is why the choice of goods for an online store should be carried out deliberately, taking into account both the capabilities and analysis of prospects in the niche, as well as a number of other important parameters. One of the methods of choosing a competitive product may be the analysis of goods in marketplaces based on the emotional color of the calls. Product feedback research is an extremely popular topic, which is confirmed by the analysis of studies. Calls can be constantly reread, but when there are many goods in one segment, because there are more manufacturers, it is laborious. Therefore, the development of technology that will be able to automate this process is necessary for business sales. The article developed an intelligent method of choosing a competitive product based on the emotional color of the calls, which is divided into three blocks: a feedback parser, the definition of emotional coloring and the classification of calls. The findings will help retailers manage their websites wisely and help customers make product purchase decisions. In the next scientific researches, the implementation of the method will be carried out on the data of the Ukrainian site Rozetka. The classification of the most classical methods of classification based on machine learning will be carried out, namely Support Vector Classifier, Stochastic Gradient Decent Classifier, Random Forest Classifier, Decision Tree Classifier, Gaussian Naive Bayes, K-Neighbors Classifier, Ada Boost Classifier, Logistic Regression.
Keywords: product; reviews; parser; emotional coloring of the text; classification; machine learning.

References

  1. Singh, J. P., Irani, S., Rana, N. P., Dwivedi, Y. K., Saumya, S., & Roy, P. K. (2017). Predicting the “helpfulness” of online consumer reviews. Journal of Business Research, 70, 346-355.
  2. Samal, B., Behera, A. K., & Panda, M. (2017). Performance analysis of supervised machine learning techniques for sentiment analysis. 2017 Third International Conference on Sensing, Signal Processing and Security (ICSSS). DOI: 1109/ssps.2017.8071579
  3. Sun, Xinyu; Han, Maoxin; Feng, Juan (2019). Helpfulness of online reviews: Examining review informativeness and classification thresholds by search products and experience products. Decision Support Systems, 113099. DOI: 1016/j.dss.2019.113099
  4. Khedkar S., Shinde S. (2020) Deep Learning-Based Approach to Classify Praises or Complaints from Customer Reviews. In: Bhalla S., Kwan P., Bedekar M., Phalnikar R., Sirsikar S. (eds) Proceeding of International Conference on Computational Science and Applications. Algorithms for Intelligent Systems. Springer, Singapore, 391-402. https://doi.org/10.1007/978-981-15-0790-8_38
  5. Wu, P., Li, X., Shen, S., & He, D. (2020). Social media opinion summarization using emotion cognition and convolutional neural networks. International Journal of Information Management, 51, 101978
  6. Smetanin, S., & Komarov, M. (2019). Sentiment Analysis of Product Reviews in Russian using Convolutional Neural Networks. 2019 IEEE 21st Conference on Business Informatics (CBI), 01, 482-486.
  7. Saumya, S., Singh, J.P. & Dwivedi, Y.K. (2020) Predicting the helpfulness score of online reviews using convolutional neural network. Soft Comput 24, 10989–11005. https://doi.org/10.1007/s00500-019-03851-5
  8. Fouladfar, M. N. Dehkordi and M. E. Basiri, (2020). Predicting the Helpfulness Score of Product Reviews Using an Evidential Score Fusion Method, in IEEE Access, vol. 8, pp. 82662-82687. DOI: 10.1109/ACCESS.2020.2988872.
  9. Kauffmann, Peral, Gil, Ferrández, Sellers, Mora, (2019). Managing Marketing Decision-Making with Sentiment Analysis: An Evaluation of the Main Product Features Using Text Data Mining. Sustainability, 11(15), 4235. DOI: 3390/su11154235
  10. Ullah, R., Amblee, N., Kim, W., & Lee, H. (2016). From valence to emotions: Exploring the distribution of emotions in online product reviews. Decision Support Systems, 81, 41-53.
  11. Sygkounas E., Rizzo G., Troncy R. (2016) Sentiment Polarity Detection from Amazon Reviews: An Experimental Study. In: Sack H., Dietze S., Tordai A., Lange C. (eds) Semantic Web Challenges. SemWebEval 2016. Communications in Computer and Information Science, vol 641. Springer, Cham. 108-120. https://doi.org/10.1007/978-3-319-46565-4_8
  12. Lipyanina H., Maksymovych V., Sachenko A., Lendyuk T., Fomenko A., Kit I. (2020) Assessing the Investment Risk of Virtual IT Company Based on Machine Learning. In: Babichev S., Peleshko D., Vynokurova O. (eds) Data Stream Mining & Processing. DSMP 2020. Communications in Computer and Information Science, vol 1158, 167-187 Springer, Cham. https://doi.org/10.1007/978-3-030-61656-4_11
  13. Ullah, R., Amblee, N., Kim, W., & Lee, H. (2016). From valence to emotions: Exploring the distribution of emotions in online product reviews. Decision Support Systems, 81, 41-53.
  14. Sygkounas E., Rizzo G., Troncy R. (2016) Sentiment Polarity Detection from Amazon Reviews: An Experimental Study. In: Sack H., Dietze S., Tordai A., Lange C. (eds) Semantic Web Challenges. SemWebEval 2016. Communications in Computer and Information Science, vol 641. Springer, Cham. 108-120. https://doi.org/10.1007/978-3-319-46565-4_8
  15. Lipyanina H., Maksymovych V., Sachenko A., Lendyuk T., Fomenko A., Kit I. (2020) Assessing the Investment Risk of Virtual IT Company Based on Machine Learning. In: Babichev S., Peleshko D., Vynokurova O. (eds) Data Stream Mining & Processing. DSMP 2020. Communications in Computer and Information Science, vol 1158, 167-187 Springer, Cham. https://doi.org/10.1007/978-3-030-61656-4_11

Post Author: Горященко Сергій

Translate