ІНФОРМАЦІЙНИЙ ВПЛИВ У СОЦІАЛЬНОМУ СЕРЕДОВИЩІ ІНТЕРНЕТУ: АНАЛІЗ АКТИВНОСТІ КОРИСТУВАЧІВ ТА ЇХ РЕАКЦІЙ НА ПУБЛІКАЦІЇ
INFORMATION INFLUENCE IN THE INTERNET SOCIAL ENVIRONMENT: ANALYSIS OF USERS’ ACTIVITY AND THEIR RESPONSE TO PUBLICATIONS
Сторінки: 176-180. Номер: №2, 2020 (283)
Автори:
А.М. ПЕЛЕЩИШИН, Г.О. БАНДРОВСЬКИЙ
Національний університет «Львівська політехніка»
A.M. PELESHCHYSHYN, H.O. BANDROVSKYI
Lviv Polytechnic National University
DOI: https://www.doi.org/10.31891/2307-5732-2020-283-2-176-180
Рецензія/Peer review : 27.5.2020 р.
Надрукована/Printed : 16.6.2020 р.
Анотація мовою оригіналу
В статті представлено моделювання інформаційного впливу в соціальному середовищі Інтернету, а саме зацікавленості актуальних тем для користувачів на основі аналізу активності користувачів та їх реакції на публікації. Проведено аналіз інформаційного впливу в соціальному середовищі Інтернету. Досліджено активність користувачів як респондентів та визначено вагомі фактори аналізу реакцій на публікації, на основі яких побудовано математичну модель для визначення закономірностей та передбачення впливу на думку в соціальному середовищі мережі Інтернет.
Ключові слова: інформаційний вплив, перколяція, теорія ймовірності, статистичний аналіз.
Розширена анотація англійською мовою
The article presents the modelling of information influence in the social environment of the Internet, namely, the interest of relevant topics for users as readers based on the analysis of users’ activity and their reaction to publications. The analysis of information influence in the social environment of the Internet is carried out. Users’ interaction is considered as a non-linear dynamic system. The activity of users as respondents is investigated and important factors of the analysis of reactions to publications are defined. On this basis, a mathematical model is built to determine the patterns and predict the impact of opinion in the social environment of the Internet. The phenomenon of percolation applied to disseminate information among social network users is taken as the basis of the model. The percolation threshold is taken as an average value for a certain number of the most popular publications for the selected period of time depending on density of publications as a whole. The chosen mathematical problem is considered on the example of the analysis of popularity of topics of publications within the limits of publications of one author on the personal page in a social network. The given mathematical model makes it possible to apparently analyze the reaction of users as readers and to investigate the informational influence of the content published by the author. For further use of this mathematical model it is important to complicate and calibrate it in accordance with a more complex structure of the social network and analysis of the text of respondents’ comments on published content. In practical terms, the results can be used in interdisciplinary research, including mathematical modelling, to predict the information impact in the social environment of the Internet.
Keywords: information influence, percolation, probability theory, statistical analysis.
References
- Kempe, J. Kleinberg and E. Tardos, “Maximizing the spread of influence through a social network”, Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington: ACM Press, 2003, pp. 137–146.
- Pedrycz, S.-M. Chen, Social Networks: A Framework of Computational Intelligence. Springer, 2013.
- Domingos, “Mining social networks for viral marketing”, University of Washington, 2018. Available at: https://homes.cs.washington.edu/~pedrod/papers/iis04.pdf
- Chen, Ch. Wang and Ya. Wang, “Scalable influence maximization for prevalent viral marketing in large-scale social networks”, Microsoft Research Technical Report, 10. Available at: https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/msr-tr-2010-2_v2.pdf
- V. Huminskiy, A.M. Peleshchyshyn, Z. Holub, “Suggestions for informational influence on a virtual community”, International Journal of Computer Science and Business Informatics, 2015, p. 47–65.
- Peleshchyshyn, V. Vus, O. Markovets, and S. Albota, “Identifying specific roles of users of social networks and their influence methods”, Proceedings of 2018 IEEE 13th International Scientific and Technical Conference on Computer Sciences and In formation Technologies (CSIT), Lviv, 2018, vol. 2, pp. 39–42.
- G. Chkhartishvili, D.A. Gubanov, and D.A. Novikov, Social Networks: Models of Information Influence, Control and Confrontation. Springer, 2018.
- Krishnalal, S. Rengarajan, S. Babuand, K.G.Srinivasagan, “A new text mining approach based on HMM-SVM for web news classification”, International Journal of Computer Applications (0975 – 8887), 2010, Volume 1, No. 19, pp. 103–109.
- Sriram, D. Fuhry and E. Demir, “Short text classification in Twitter to improve information filtering”, SIGIR’10 Proceedings of the 33rd International Conference on Research and Development in Informational Retrieval, Geneva, 2010, pp. 841–842.
- A. Stanley, “Social networks and mathematical modeling”, CONNECTIONS, Vol. 27(1), 2006, pp. 43–49. Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.125.6966&rep=rep1&type=pdf