Надіслати статтю
вул. Інститутська 11, м. Хмельницький, 29016

ВПЛИВ ПАРАМЕТРІВ ПРОЦЕСУ СУБКРИТИЧНОЇ ВОДНОЇ ЕКСТРАКЦІЇ НА ЕФЕКТИВНІСТЬ ВИЛУЧЕННЯ БІЛКУ ІЗ СОЄВОГО ШРОТУ

INFLUENCE OF SUBCCRITICAL WATER EXTRACTION PARAMETERS ON THE EFFICIENCY OF PROTEIN RECOVERY FROM SOYBEAN MEAL

Сторінки: 256264. Номер: №4, 2022 (311)  
Автори:
СУКМАНОВ В.О.
Полтавський державний аграрний університет
https://orcid.org/0000-0003-1248-4068
e-mail: sukmanovvaleri@gmail.com
КОВАЛЬЧУК О. В.
Державний біотехнологічний університет
https://orcid.org/0000-0002-1762-2434
e-mail: olena.vs.kovalchuk@gmail.com
Valeriy SUKMANOV
Poltava State Agrarian University
Olena KOVALCHUK
State Biotechnological University
DOI: https://www.doi.org/10.31891/2307-5732-2022-311-4-256-264

Анотація мовою оригіналу

Робота присвячена дослідженню процесу екстрагування субкритичною водою білку з соєвого шроту. Метою дослідження є встановлення впливу параметрів (температура: , тривалість екстрагування: ( ), гідромодуль: ) процесу екстрагування субкритичною водою на вміст білку у сухій речовині екстракту соєвого шроту та їх раціональні значення.
Ключові слова: екстрагування; субкритична вода; біологічно активні речовини; білок; соєвий шрот.

Розширена анотація англійською  мовою

This work is devoted to the study of the extraction process of protein from soybean meal with subcritical water. The aim of the study is to determine the influence of parameters (temperature: , extraction duration: ( ), hydromodulus: ) of the subcritical water extraction process on the protein content in the dry matter of soybean meal extract and their rational values. To determine the rational parameters of the extraction process, an empirical research method was applied using an orthogonal compositional plan of the 2-nd order for a fractional-factorial experiment . Samples of extracts were obtained on a laboratory setup based on a high pressure reactor. In the obtained samples, the total protein content was determined by the method of catalytic oxidation with chemiluminescent detection. On the basis of the obtained results, a quadratic interpolation model was constructed that relates the total protein content in the dry matter of the extract with the extraction parameters. The analysis of the constructed model made it possible to establish the optimal extraction parameters: temperature , extraction duration . The yield of protein to the dry matter of the extract at optimal values of temperature and duration of the process monotonically increases with an increase in the hydromodulus and reaches a maximum  at the hydromodulus . The results obtained can be used to improve the technology for obtaining soy protein concentrate and isolate using the subcritical water extraction method. Due to the environmental friendliness of this extraction technology, the resulting extracts can be directly used to improve the nutritional value of various food products.
Keywords: extraction; subcritical water; biologically active substances; protein; soybean meal.

Література

  1. Qin P., Wang T., Luo Y. A review on plant-based proteins from soybean: Health benefits and soy product development. Agric. Food Res. 2022. Vol. 7. 100265. DOI: https://doi.org/10.1016/j.jafr.2021.100265.
  2. Lachos-Perez D., Baseggio A. M., Mayanga-Torres P. C., Maróstica M. R., Rostagno M. A., Martínez J., Forster-Carneiro T. Subcritical water extraction of flavanones from defatted orange peel. Supercrit. Fluids. 2018. Vol. 138. P. 7–16. DOI: https://doi.org/10.1016/j.supflu.2018.03.015.
  3. Zhang J., Wen C., Zhang H., Duan Y., Ma Recent advances in the extraction of bioactive compounds with subcritical water: A review. Trends Food Sci. Technol. 2020. Vol. 95. P. 183–195. DOI: https://doi.org/10.1016/j.tifs.2019.11.018.
  4. Cheng Y., Xue F., Yu S., Du S., Yang Y. Subcritical Water Extraction of Natural Products. Molecules. 2021. 26. 4004. DOI: https://doi.org/10.3390/molecules26134004.
  5. Ibrahim S., Santos R., Bowra Optimization of Subcritical Water Mediated Extraction of Apple Pomace Polyphenolics and their Antioxidant Activity. J. Chromatogr Sep Tech. 2018. Vol. 9, No. 5. 1000410. DOI: https://doi.org/10.4172/2157-7064.1000410.
  6. Sukmanov V., Ukrainets A., Zavyalov V., Marynin A. Research of extraction of biologically active substances from grape pomace by subcritical water. -Eur. J. Enterp. Technol. 2017. Vol. 5, No. 11-89. P. 70–80. DOI: https://doi.org/10.15587/1729-4061.2017.108992.
  7. Сукманов В. О., Супрун А. В. Екстрагування біологічно активних речовин з лушпиння цибулі субкритичною водою в статичному режимі. Journal of Chemistry and Technologies. 2021. Вип. 29, № 2. 265–278. DOI: https://doi.org/10.15421/jchemtech.v29i2.225749.
  8. Sun H., Yuan X., Zhang Z., Su X., Shi M. Thermal Processing Effects on the Chemical Constituent and Antioxidant Activity of Okara Extracts Using Subcritical Water Extraction. Chem. 2018. Vol. 2018. 6823789. DOI: https://doi.org/10.1155/2018/6823789.
  9. Nkurunziza D., Pendleton P., Chun B. Optimization and kinetics modeling of okara isoflavones extraction using subcritical water. Food Chem. 2019. Vol. 295. 613–621. DOI: https://doi.org/10.1016/j.foodchem.2019.05.129.
  10. Nkurunziza D., Pendleton P., Sivagnanam S., Park J.-S., Chun B. Subcritical water enhances hydrolytic conversions of isoflavones and recovery of phenolic antioxidants from soybean byproducts (okara). Ind. Eng. Chem. 2019. Vol. 80, No. 25. P. 696–703. DOI: https://doi.org/10.1016/j.jiec.2019.08.044.
  11. Stintzing F. C., Hoffmann M., Carle R. Thermal degradation kinetics of isoflavone aglycones from soy and red clover. Nutr. Food Res. 2006. Vol. 50, No. 4-5. P. 373–380. DOI: https://doi.org/10.1002/mnfr.200500187.
  12. Álvarez-Viñas M., Rodríguez-Seoane P., Flórez-Fernández N., DoloresTorres M., Díaz-Reinoso B., Moure A., Domínguez H. Subcritical Water for the Extraction and Hydrolysis of Protein and Other Fractions in Biorefineries from Agro-food Wastes and Algae: a Review. Food Bioprocess Technol. 2021. 14. P. 373–387. DOI: https://doi.org/10.1007/s11947-020-02536-4.
  13. Sereewatthanawut I., Prapintip S., Watchiraruji K., Goto M., Sasaki M., Shotipruk A. Extraction of protein and amino acids from deoiled rice bran by subcritical water hydrolysis. Technol. 2008 Vol. 99, No. 3. P. 555–561. DOI: https://doi.org/10.1016/j.biortech.2006.12.030.
  14. Di Domenico Ziero H., Ampese L. C., Sganzerla W. G., Torres-Mayanga P. C., Timko M. T., Mussatto S. I., Forster-Carneiro T. Subcritical water hydrolysis of poultry feathers for amino acids production. Supercrit. Fluids. 2022. Vol. 181. 105492. DOI: https://doi.org/10.1016/j.supflu.2021.105492.
  15. Rodrigues L. A., Matias A. A., Paiva A. Recovery of antioxidant protein hydrolysates from shellfish waste streams using subcritical water extraction. Food Bioprod. Process. 2021. 130. P. 154–163. DOI: https://doi.org/10.1016/j.fbp.2021.09.011.
  16. Zhang J., Wen C., Zhang H., Zandile M., Luo X., Duan Y., Ma H. Structure of the zein protein as treated with subcritical water. J. Food Prop. 2018. Vol. 21, No. 1. P. 128–138. DOI: https://doi.org/10.1080/10942912.2017.1414839.
  17. S´a A., Moreno Y., Carciofi B. Food processing for the improvement of plant proteins digestibility. Rev. Food Sci. Nutr. 2020. Vol. 60, No. 20. P. 3367–3386. DOI: https://doi.org/10.1080/10408398.2019.1688249.
  18. Ma C.-Y., Liu W.-S., Kwok K. C., Kwok F. Isolation and characterization of proteins from soymilk residue (okara). Food Res. Int. 1996. 29, No. 8. P. 799–805. DOI: https://doi.org/10.1016/0963-9969(95)00061-5.
  19. Chang K., Jiang W., Liu J. Effect of subcritical water treatment on the structure and foaming properties of egg white protein. Food Hydrocoll. 2022. 124, Part A. 107241. DOI: https://doi.org/10.1016/j.foodhyd.2021.107241.
  20. Sereewatthanawut I., Prapintip S., Watchiraruji K., Goto M., Sasaki M., Shotipruk A. Extraction of protein and amino acids from deoiled rice bran by subcritical water hydrolysis. Technol. 2008. Vol. 99, No. 3. P. 555–561. DOI: https://doi.org/10.1016/j.biortech.2006.12.030.
  21. Wiboonsirikul J., Mori M., Khuwijitjaru P., Adachi S. Properties of Extract from Okara by Its Subcritical Water Treatment. J. Food Prop. 2013. Vol. 16, No. 5. P. 974–982. DOI: https://doi.org/10.1016/j.foodchem.2010.04.074.
  22. Watchararuji K., Goto M., Sasaki M., Shotipruk A. Value-added subcritical water hydrolysate from rice bran and soybean meal. Technol. 2008. Vol. 99, No. 14. P. 6207–6213. DOI: https://doi.org/10.1016/j.biortech.2007.12.021.
  23. Khuwijitjaru P., Anantanasuwong S., Adachi S. Emulsifying and Foaming Properties of Defatted Soy Meal Extracts Obtained by Subcritical Water Treatment. J. Food Prop. 2011. Vol. 14, No. 1. P. 9–16. DOI: https://doi.org/10.1080/10942910903112118.
  24. Ndlela S. C., de Moura J. M. L. N., Olson N. K., Johnson L. A. Aqueous Extraction of Oil and Protein from Soybeans with Subcritical Water. Am. Oil Chem.’ Soc. 2012. Vol. 89, No. 6. P. 1145–1153. DOI: https://doi.org/10.1007/s11746-011-1993-7.

References

  1. Qin P., Wang T., Luo Y. A review on plant-based proteins from soybean: Health benefits and soy product development. Agric. Food Res. 2022. Vol. 7. 100265. DOI: https://doi.org/10.1016/j.jafr.2021.100265.
  2. Lachos-Perez D., Baseggio A. M., Mayanga-Torres P. C., Maróstica M. R., Rostagno M. A., Martínez J., Forster-Carneiro T. Subcritical water extraction of flavanones from defatted orange peel. Supercrit. Fluids. 2018. Vol. 138. P. 7–16. DOI: https://doi.org/10.1016/j.supflu.2018.03.015.
  3. Zhang J., Wen C., Zhang H., Duan Y., Ma Recent advances in the extraction of bioactive compounds with subcritical water: A review. Trends Food Sci. Technol. 2020. Vol. 95. P. 183–195. DOI: https://doi.org/10.1016/j.tifs.2019.11.018.
  4. Cheng Y., Xue F., Yu S., Du S., Yang Y. Subcritical Water Extraction of Natural Products. Molecules. 2021. 26. 4004. DOI: https://doi.org/10.3390/molecules26134004.
  5. Ibrahim S., Santos R., Bowra Optimization of Subcritical Water Mediated Extraction of Apple Pomace Polyphenolics and their Antioxidant Activity. J. Chromatogr Sep Tech. 2018. Vol. 9, No. 5. 1000410. DOI: https://doi.org/10.4172/2157-7064.1000410.
  6. Sukmanov V., Ukrainets A., Zavyalov V., Marynin A. Research of extraction of biologically active substances from grape pomace by subcritical water. -Eur. J. Enterp. Technol. 2017. Vol. 5, No. 11-89. P. 70–80. DOI: https://doi.org/10.15587/1729-4061.2017.108992.
  7. Sukmanov V. A., Suprun A. V. [Extraction of biologically active substances from onion peel with the subcritical water in a static mode]. Journal of Chemistry and Technologies. 2021. 29, No. 2. P. 265–278. (in Ukrainian). DOI: https://doi.org/10.15421/jchemtech.v29i2.225749.
  8. Sun H., Yuan X., Zhang Z., Su X., Shi M. Thermal Processing Effects on the Chemical Constituent and Antioxidant Activity of Okara Extracts Using Subcritical Water Extraction. Chem. 2018. Vol. 2018. 6823789. DOI: https://doi.org/10.1155/2018/6823789.
  9. Nkurunziza D., Pendleton P., Chun B. Optimization and kinetics modeling of okara isoflavones extraction using subcritical water. Food Chem. 2019. Vol. 295. 613–621. DOI: https://doi.org/10.1016/j.foodchem.2019.05.129.
  10. Nkurunziza D., Pendleton P., Sivagnanam S., Park J.-S., Chun B. Subcritical water enhances hydrolytic conversions of isoflavones and recovery of phenolic antioxidants from soybean byproducts (okara). Ind. Eng. Chem. 2019. Vol. 80, No. 25. P. 696–703. DOI: https://doi.org/10.1016/j.jiec.2019.08.044.
  11. Stintzing F. C., Hoffmann M., Carle R. Thermal degradation kinetics of isoflavone aglycones from soy and red clover. Nutr. Food Res. 2006. Vol. 50, No. 4-5. P. 373–380. DOI: https://doi.org/10.1002/mnfr.200500187.
  12. Álvarez-Viñas M., Rodríguez-Seoane P., Flórez-Fernández N., DoloresTorres M., Díaz-Reinoso B., Moure A., Domínguez H. Subcritical Water for the Extraction and Hydrolysis of Protein and Other Fractions in Biorefineries from Agro-food Wastes and Algae: a Review. Food Bioprocess Technol. 2021. 14. P. 373–387. DOI: https://doi.org/10.1007/s11947-020-02536-4.
  13. Sereewatthanawut I., Prapintip S., Watchiraruji K., Goto M., Sasaki M., Shotipruk A. Extraction of protein and amino acids from deoiled rice bran by subcritical water hydrolysis. Technol. 2008 Vol. 99, No. 3. P. 555–561. DOI: https://doi.org/10.1016/j.biortech.2006.12.030.
  14. Di Domenico Ziero H., Ampese L. C., Sganzerla W. G., Torres-Mayanga P. C., Timko M. T., Mussatto S. I., Forster-Carneiro T. Subcritical water hydrolysis of poultry feathers for amino acids production. Supercrit. Fluids. 2022. Vol. 181. 105492. DOI: https://doi.org/10.1016/j.supflu.2021.105492.
  15. Rodrigues L. A., Matias A. A., Paiva A. Recovery of antioxidant protein hydrolysates from shellfish waste streams using subcritical water extraction. Food Bioprod. Process. 2021. 130. P. 154–163. DOI: https://doi.org/10.1016/j.fbp.2021.09.011.
  16. Zhang J., Wen C., Zhang H., Zandile M., Luo X., Duan Y., Ma H. Structure of the zein protein as treated with subcritical water. J. Food Prop. 2018. Vol. 21, No. 1. P. 128–138. DOI: https://doi.org/10.1080/10942912.2017.1414839.
  17. S´a A., Moreno Y., Carciofi B. Food processing for the improvement of plant proteins digestibility. Rev. Food Sci. Nutr. 2020. Vol. 60, No. 20. P. 3367–3386. DOI: https://doi.org/10.1080/10408398.2019.1688249.
  18. Ma C.-Y., Liu W.-S., Kwok K. C., Kwok F. Isolation and characterization of proteins from soymilk residue (okara). Food Res. Int. 1996. 29, No. 8. P. 799–805. DOI: https://doi.org/10.1016/0963-9969(95)00061-5.
  19. Chang K., Jiang W., Liu J. Effect of subcritical water treatment on the structure and foaming properties of egg white protein. Food Hydrocoll. 2022. 124, Part A. 107241. DOI: https://doi.org/10.1016/j.foodhyd.2021.107241.
  20. Sereewatthanawut I., Prapintip S., Watchiraruji K., Goto M., Sasaki M., Shotipruk A. Extraction of protein and amino acids from deoiled rice bran by subcritical water hydrolysis. Technol. 2008. Vol. 99, No. 3. P. 555–561. DOI: https://doi.org/10.1016/j.biortech.2006.12.030.
  21. Wiboonsirikul J., Mori M., Khuwijitjaru P., Adachi S. Properties of Extract from Okara by Its Subcritical Water Treatment. J. Food Prop. 2013. Vol. 16, No. 5. P. 974–982. DOI: https://doi.org/10.1016/j.foodchem.2010.04.074.
  22. Watchararuji K., Goto M., Sasaki M., Shotipruk A. Value-added subcritical water hydrolysate from rice bran and soybean meal. Technol. 2008. Vol. 99, No. 14. P. 6207–6213. DOI: https://doi.org/10.1016/j.biortech.2007.12.021.
  23. Khuwijitjaru P., Anantanasuwong S., Adachi S. Emulsifying and Foaming Properties of Defatted Soy Meal Extracts Obtained by Subcritical Water Treatment. J. Food Prop. 2011. Vol. 14, No. 1. P. 9–16. DOI: https://doi.org/10.1080/10942910903112118.
  24. Ndlela S. C., de Moura J. M. L. N., Olson N. K., Johnson L. A. Aqueous Extraction of Oil and Protein from Soybeans with Subcritical Water. Am. Oil Chem.’ Soc. 2012. Vol. 89, No. 6. P. 1145–1153. DOI: https://doi.org/10.1007/s11746-011-1993-7.

Post Author: Горященко Сергій

Translate