Надіслати статтю
вул. Інститутська 11, м. Хмельницький, 29016

МЕТОДИ РОЗРАХУНКУ ТЕПЛОПРОВІДНОСТІ ЕЛЕКТРИЧНИХ МАШИН

METHODS OF CALCULATION OF HEAT CONDUCTIVITY OF ELECTRICAL MACHINES

Сторінки: 232-234. Номер: №3, 2019 (273)
Автори:
Д.Ю. ЗУБЕНКО, О.М. ПЕТРЕНКО, В.В. ЛІНЬКОВ
Харківський національний університет міського господарства імені О.М. Бекетова
D.U. ZUBENKO, O.M. PETRENKO, V.V. LINKOV
O.M. Beketov National University of Urban Economy in Kharkiv
DOI: https://www.doi.org/10.31891/2307-5732-2019-273-3-232-234
Рецензія/Peer review : 16.05.2019 р.
Надрукована/Printed : 03.06.2019 р.

Анотація мовою оригіналу

У цій статті розглядається питання методів розрахунку теплопровідності електричних машин з використанням нового пористого матеріалу. Представлена спрощена модель структури і тепловий опір основних елементів електричних машин. Результат розрахунку перевіряються плоскою моделлю двошаровою теплопровідністю, яка заснована на експериментах і електромагнітному моделюванні. Моделі теплового стану отримані за допомогою паралельних методів і класичним методом оцінки.
Ключові слова: електрична машина, електродвигун, діагностика, методи теплового контролю, нейронні мережі.

Розширена анотація англійською мовою

In this paper, Metal examines the question of methods for calculating the thermal conductivity of electric machines. A simplified model of structure and thermal resistance of the main elements of electric machines is presented. The result of the calculation is verified by a flat model of two-layer heat conductivity, which is based on experiments and electromagnetic modelling. Models of the thermal state are obtained using parallel methods and the classical method of evaluation. For such requirements, more accurate thermal models are needed that integrate the thermal properties of the material (electrical insulating and magnetic materials) to accurately imagine the behaviour of the system. For such requirements, more accurate thermal models are needed that integrate the thermal properties of the material (electrical insulating and magnetic materials) to accurately imagine the behaviour of the system. In a thermal study, one of the main problems of electric machines is their materials, of which it is the most vulnerable component, such as insulating materials. Winding of electric machines can be damaged or reduce the service life if the heat limit for the material is exceeded. However, as the slots are filled with composite materials, such a real slot model is difficult to install. The prediction of the thermal conductivity (PFC) using a number of tools, such as the finite element method (ICE), will result in excessive simulation time. Excitation winding where the side of electric machines is usually hidden in a closed room using an epoxy resin (mainly in special linear motors) or varnish (mainly in rotary engines), copper conductors are isolated from each other. Moreover, the enamel wire outside the copper conductor, the insulating paper slot is filled to increase the insulation. Also, different from porous materials, the component of metal and gas in porous materials may be replaced by equivalent insulation and copper wires, respectively. In addition, there is no fluid in the thermal transfer between them, porosity can not be replaced by a wire without isolation. Therefore, the actual task of developing a mathematical model of thermal conductivity in electric machines with different types of insulation.
Key words: electric machine, electric motor, diagnostics, methods of thermal control, neural networks.

References

  1. Idoughi, X. Mininger, F. Bouillault, L. Bernard, E. Hoang, Thermal model with winding homogenization and FIT discretization for stator slot, IEEE Trans. Magn. 47 (12) (2011) 4822–4826.
  2. Kou, X. Huang, H. Wu, L. Li, Thrust and thermal characteristics of electromagnetic launcher based on permanent magnet linear synchronous motors, in: 2008 14th Symposium on Electromagnetic Launch Technology, 2008, pp. 1–6.
  3. K. Carson, S.J. Lovatt, D.J. Tanner, A.C. Cleland, Thermal conductivity bounds for isotropic, porous materials, Int. J. Heat Mass Transf. 48 (11) (2005) 2150– 2158.
  4. Liu, H.F. Chen, H.W. Zhang, Y.X. Li, Heat transfer performance of lotus-type porous copper heat sink with liquid GaInSn coolant, Int. J. Heat Mass Transf. 80 (2015) 605–613.
  5. Nakajima, Fabrication, properties and application of porous metals with directional pores, Prog. Mater Sci. 52 (7) (2007) 1091–1173.
  6. Xuzhen, L. Jiaxi, Z. Chengming, L. Liyi, Calculation and experimental study on temperature rise of a high overload tubular permanent magnet linear motor, IEEE Trans. Plasma Sci. 41 (5) (2013) 1182–1187.
  7. Tessarolo, C. Bruzzese, Computationally efficient thermal analysis of a lowspeed high-thrust linear electric actuator with a three-dimensional thermal network approach, IEEE Trans. Ind. Electron. 62 (3) (2015) 1410–1420.
  8. Song, N. Mijatovic, S. Zou, B.B. Jensen, J. Holbøll, AC losses and their thermal effect in high-temperature superconducting machines, IEEE Trans. Appl. Supercond. 26 (4) (2016) 1–5.
  9. Zhou, J. Pries, H. Hofmann, Computationally efficient 3-D finite-elementbased dynamic thermal models of electric machines, IEEE Trans. Transp. Electrification 1 (2) (2015) 138–149.
  10. Galea, C. Gerada, T. Raminosoa, P. Wheeler, A thermal improvement technique for the phase windings of electrical machines, IEEE Trans. Ind. Appl. 48 (1) (2012) 79–87.
  11. J. Li, J. Ojeda, E. Hoang, M. Gabsi, Thermal-electromagnetic analysis of a fault-tolerant dual-star flux-switching permanent magnet motor for critical applications, IET Electr. Power Appl. 5 (6) (2011) 503–513.
  12. Lu, X. Zhang, Y. Chen, X. Huang, Y. Ye, Z.Q. Zhu, Modeling and investigation of thermal characteristics of a water-cooled permanent-magnet linear motor, IEEE Trans. Ind. Appl. 51 (3) (2015) 2086–2096.
  13. Du, H. Zhang, Y. Li, Y. Liu, X. Chen, Y. He, Synthesis of a bimodal porous Cu with nanopores on the inner surface of Gasar pores: influences of preparation conditions, Appl. Surf. Sci. 360 (2016) 148–156.
  14. C. Hanselman, Brushless Permanent-Magnet Motor Design, McGraw-Hill, New York, 1994.
  15. Daniel, R. Corcolle, A note on the effective magnetic permeability of polycrystals, IEEE Trans. Magn. 43 (7) (2007) 3153–3158.
  16. Li, M. Mingna, Y. Tang, Z. He, Q. Chen, Iron loss and inductance analysis considering magnetic nonlinearity in multi-segmented plate permanent magnet linear motor, IEEE Trans. Magn. 48 (11) (2012) 3009–3012.

Post Author: npetliaks

Translate