Надіслати статтю
вул. Інститутська 11, м. Хмельницький, 29016

СИСТЕМА АВТОМАТИЗОВАНОЇ СИНДРОМАЛЬНОЇ ДІАГНОСТИКИ ЗА ЛАПАРОСКОПІЧНИМИ ЗАХВОРЮВАННЯМИ

SYSTEM OF AUTOMATED SYNDROMAL DIAGNOSTICS FOR LOPEROSCOPIC DISEASES

Сторінки: 151-157. Номер: №3, 2019 (273)
Автори:
А.В. ЛЯШЕНКО
Одеський національний медичний університет
A.V. Lyashenko
Odessa National Medical University
DOI: https://www.doi.org/10.31891/2307-5732-2019-273-3-151-157
Рецензія/Peer review : 24.05.2019 р.
Надрукована/Printed : 02.06.2019 р.

Анотація мовою оригіналу

Метою статті є розробка структурної схеми системи автоматичної синдромальної діагностики за лапароскопічними зображеннями. Відмінністю запропонованої системи від систем подібного класу є наявність в структурі підсистеми підтримки рішень і модуля перевірки рішень і тактик лікування на адекватність реальної ситуації в стані здоров’я пацієнта. Було запропоновано базу даних, яка створена на основі медичної інформаційної системи, що дозволить зберігати великі обсяги архівів у стандарті DICOM-V.3.
Ключові слова: лапароскопічне зображення, лапароскопічна хірургія, автоматизована синдромальна діагностика.

Розширена анотація англійською мовою

Laparoscopic surgery (LS) today is a successful alternative to open surgical intervention. In this case, the main technical condition for the success of laparoscopic surgery is to obtain a qualitative image of the operating field, as well as the possibility of adjusting the system to increase the image, reducing the risk of injury, errors during the operation. Since diagnostics of LS involves the use of combinational signs for the detection of pathology, the localization of the object by its features is determined by a set of descriptors in the form of a range of differences and is carried out by creating an algorithm for selecting the required descriptor. The process of recognizing an object in a video stream includes three successive stages of the functional diagram of IDEF0. The purpose of the article is to develop a structural scheme of the system of automatic syndromic diagnostics by laparoscopic images. The difference between the proposed system and systems of this class is the presence in the structure of the subsystem of decision support and the module of verification of decisions and treatment tactics on the adequacy of the actual situation in the patient’s health. A database was created based on the medical information system, which would allow storing large volumes of archives in the DICOM-V.3 standard. The system of automated diagnostics of diseases of the abdominal cavity and small bowl allows to carry out a systematic analysis of the condition of the organs under investigation, to create databases, to detect a syndromic pathology in the early stages of the disease with an accuracy of up to 90% of diagnosed cases. The application of the developed system of automated recognition of laparoscopic images allows to timely diagnose the pathological process and to carry out medical measures, which provides increased efficiency of treatment of patients. At the same time, the reduction of false-positive results allowed to prevent surgical intervention in 64 of 91 patients (70.3%), and the reduction of false-negative diagnoses prevented the progressive development of the disease in 45 out of 140 (32.1%) patients, and according to expert assessment – to reduce the risk of postoperative complications in 65.1% of them, to accelerate the postoperative rehabilitation period by 30.5%, and to prevent the conversion of surgical intervention in 34.6% of the examined patients.
Keywords: laparoscopic image, laparoscopic surgery, automated syndrome diagnosis.

References

  1. Dray X. The future of gastrointestinal therapeutic endoscopy: NOTES / X. Dray, P. Marteaux / Gastroenterologie Clinique et Biologique. – 2009. – Vol. 33, N 8–9. – P. 758–766.
  2. Kano N. The future of NOTES from the conservative point of view / N. Kano // Journal of Hepato–Biliary–Pancreatic Surgery. – 2009. – 16, N 3. – P. 288–291.
  3. Kati D., A. L. Wekerle, F. Gartner, H. Kenngott, B. P. Mller-Stich, R. Dillmann, S. Speidel. Knowledge-driven formalization of laparoscopic surgeries for rule-based intraoperative context-aware assistance. In IPCAI, volume 8498 of LNCS, P. 158–167.
  4. Blum T., H. Feussner, N. Navab. Modeling and segmentation of surgical workflow from laparoscopic video. In MICCAI, volume 6363 of LNCS, pages 400–407, 2010.
  5. Bayazitov N.R. Distorsiya i hromaticheskaya aberraciya kak faktory diagnosticheskoj informativnosti laparoskopicheskih izobrazhenij / N.R. Bayazitov, L.S. Godlevskij, A.V. Lyashenko // Integrativna antropologiya. – 2011. – № 1. – S. 64–69.
  6. Bayazitov N.R. Informativnost laparoskopicheskih izobrazhenij pri diagnosticheskoj minilaparoskopii / N.R. Bayazitov, L.S. Godlevskij // Zhurnal klinicheskoj informatiki i telemediciny. – 2010. – № 1. – 50–56.
  7. Bayazitov N.R. Telehirurgiya: novye vozmozhnosti laparoskopicheskih tehnologij / N.R. Bayazitov // Dosyagnennya biologiyi ta medicini. – 2008. – № 2 (12). – S. 84–98.
  8. Winsberg F., Elkin M., Macy Jr J., Bordaz V., Weymouth W. Detection of Radiographic Abnormalities in Mammograms by Means of Optical Scanning and Computer Analysis 1. Radiology. 1967; 89(2): 211-5.
  9. Padoy N., T. Blum, S.A. Ahmadi, H. Feussner, M. O. Berger, N. Navab. Statistical modeling and recognition of surgical workflow. Medical Image Analysis, 16(3):632–641, 2012.
  10. Xu Y., Ji H., Fermuller C., editors. A projective invariant for textures. Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on; 2006: IEEE. – P. 145–158
  11. Golcev A.D. Algoritm posledovatelnogo opredeleniya teksturnyh priznakov, harakterizuyushih odnorodnye teksturnye oblasti, dlya zadachi segmentacii zobrazhenij / A.D. Golcev //Kibernetika i vychislitelnaya tehnika. – 2013. – Vip. 173. – S. 25–34.
  12. Dovbysh A.S. Optymizatsiia slovnyka oznak rozpiznavannia intelektualnoi systemy keruvannia / A. S. Dovbysh, O.V. Korobchenko // Informatyka, matematyka, avtomatyka : materialy ta prohrama naukovo-tekhnichnoi konferentsii, m. Sumy, 22–27 kvitnia 2013 r. / vidp. za vyp. S.I. Protsenko. – Sumy : SumDU, 2013. – S. 37.
  13. Dovbysh A.S. Osnovy teorii rozpiznavannia obraziv : navch. posib. : u 2 ch. 1 / A.S. Dovbysh, I.V. Shelekhov. – Sumy : SumDU, 2015. – 109 s.
  14. Gurevich N. A. laparoskopicheskaya diagnostika i lechenie ostrih hirurgicheskih zabolevanij organov bryushnoj polosti : avtoref. kand. med. nauk po spec. 14.00.27 / Gurevich N. A. – Minsk, 2007. – 25 s.
  15. Neophytou M.S., V. Tanos, I.P. Constantinou, M.S. Pattichis, E.C. Kyriacou, and C.S. Pattichis, “Computer–Aided Diagnosis in Hysteroscopic Imaging”, IEEE Journal of Biomedical and Health Informatics, vol. 19, no. 3, pp. 1129–1136.
  16. Zappella L., B. Bjar, G. Hager, R. Vidal. Surgical gesture classification from video and kinematic data. Medical Image Analysis, 17(7):732 – 745, 2013.
  17. Lalys F., D. Bouget, L. Riffaud, P. Jannin. Automatic knowledge-based recognition of low-level tasks in ophthalmological procedures. IJCARS, 8(1): 39–49, 2012.
  18. Gricenko V.I. Medicinskie informacionnye sistemy kak elementy edinogo informacionnogo medicinskogo prostranstva / V.I. Gricenko, L.M. Kozak, A.S. Kovalenko, A.A. Pezencali, N.S. Rogozinskaya, V.G. Ostashko // Kibernetika i vychislitelnaya tehnika. – 2013. – Vip. 174. – S. 30–46.
  19. Daniel O’Neill. Video Analytics Software And Intelligent Light Controls Help Satisfy Sustainability, Security [Elektronnij resurs] / O’Neill. Daniel // Facilitiesnet – 2009 – Rezhim dostupu : http://www.facilitiesnet.com/security/article/Video-Analytics-Software-and-Intelligent-Light-Controls-Help-Satisfy-Sustainability-Security–11350
  20. Ivanov S. E. Laparosokpiya yaichnikov. Diagnostika udalenie i metodi reabilitacii [Elektronnyj resurs] / Sergej Eduardovich Ivanov // www.polismed.com. – 2015. – Rezhim dostupu : http://www.polismed.com/articles-laparoskopija-jaichnika-diagnosticheskaja.htm.

Post Author: npetliaks

Translate