Надіслати статтю
вул. Інститутська 11, м. Хмельницький, 29016

РОЗРОБКА СТРУКТУРИ СЛОВНИКА ДЛЯ ЧАТ-БОТУ КАТАЛОГУ ОСВІТНІХ ПОСЛУГ ЗАКЛАДУ ВИЩОЇ ОСВІТИ

DEVELOPMENT OF THE DICTIONARY STRUCTURE FOR THE CHAT-BOT OF EDUCATIONAL SERVICES CATALOG OF THE HIGHER EDUCATION INSTITUTION

Сторінки: 94-98. Номер: №5, 2022 (313)  
DOI: https://www.doi.org/10.31891/2307-5732-2022-313-5-94-98
Автори: ШІЛІНГ Анна
Національний університет «Львівська політехніка»
ORCID ID: 0000-0003-1063-3437
e-mail: anna.y.shilinh@lpnu.ua
ПАСЬКО Анастасія
Національний університет «Львівська політехніка»
e-mail: anastasiia.pasko.dk.2020@lpnu.ua
SHILINH Anna, PASKO Anastasiia
Lviv Polytechnic National University

Анотація мовою оригіналу

В роботі запропоновано структуру словника лексичних запитів користувачів офіційних веб-ресурсів до чат-боту освітніх послуг закладу вищої освіти. Визначено, що ключові слова тематичних запитів, які визначають відповідні розділи каталогу освітніх послуг закладу вищої освіти, співпадають з мотиваційними намірами користувачі офіційних веб-ресурсів ЗВО. Розроблено показник важливості ключових слів у тематичних запитах до чат-боту, який оцінює ключові слова в запиті та зменшує важливість поширених слів. Результати дослідження використовуються і можуть бути використані для своєчасного та якісного інформування споживачів освітніх послуг та ефективного надання освітніх послуг закладами вищої освіти.
Ключові слова: словник, чат-бот, каталог освітніх послуг, показник важливості, заклад вищої освіти.

Розширена анотація англійською  мовою

The aim of this article is to develop a dictionary structure for a chatbot of educational services catalog of the higher education institution. The quality of information support for consumers of educational services depends on the timeliness and reliability of the information provided. If the World Wide Web user does not receive information from official sources of the higher education institution (HEI), this may cause a negative impact on the information system of the higher education institution. The motivational intentions of the official web resources users of the higher education institution in thematic requests to the chatbot correspond to specific sections in the educational services catalog of the higher education institution. Therefore, the lexical selection of motivational intentions, which are characterized by keywords in the thematic query, makes it possible to clearly formulate/correct the completeness of the provision of relevant information. This will make it possible to rationally use the communication process between higher education institution and educational services consumers. As a result of the research, the structure of the lexical content of the dictionary for the chatbot of the educational services catalog is proposed, taking into account the peculiarities of the formation of users information needs from official web resources of the higher education institution. Each thematic request to the proposed chatbot is characterized by a set of keywords that correspond to certain sections of the educational services catalog of the higher education institution. The importance of these keywords are determined by the weighting factor, which shows the relevance of the thematic query to the section of the educational services catalog. For this, a statistical indicator was used, which evaluates the keywords in the query and reduces the importance of common words. The results of the research are applied and can be used for effective communication between the higher education institution and consumers of educational services using HEI’s official resources for effective planning of educational services.
Keywords: dictionary, chatbot, catalog of educational services, importance indicator, higher education institution.

Література

  1. Vus V., Albota S., Dobrovolska V. The analysis of online communities as platforms for informational influences. Journal of Scientific and Engineering Research. 2019. № 6(2). Р. 72-78.
  2. Burnett G. Information exchange in virtual communities: a comparative study. Journal of Computer-Mediated Communication. Vol. 9 (2). URL: http://onlinelibrary.wiley.com/doi/10.1111/j.1083-6101.2004.tb00286.x/full.
  3. Zhang J., Yu J.X., Hou J. Web communities: analysis and construction. Springer, Heidelberg. 2006. 187 p.
  4. Shiling A., Zhezhnych P. Analysis of the user behavior specialized forums university entrants. Proceedings of the VIIth International Conference on Computer Science and Information Technologies (CSIT’2012). Lviv: Publisher Lviv Polytechnic. 2012. P. 202.
  5. Connelly G., Halliday J. Reasons for choosing a further education: the views of 700 new entrants. Journal of Vocational Education & Training. Vol. 53(2). 2001. P. 181-192.
  6. Mikhno N., Sorokina L. Trend analysis of the educational choice of university entrants as tool to improve the quality of educational service. International Journal of Information and Communication Technologies in Education. Vol. 6(3). 2017. 36-39.
  7. Yi L., Liu B. Eliminating noisy information in web pages for Data Mining. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD-2003), Washington DC, USA. P. 296. 305.
  8. Santos A., Guillen P.G., Villa E., Serradilla F. Semantic construction of univocal language. Information Theories and Applications. Vol. 19, Number 3. 2012. P. 211—215.
  9. Corcho O., Lopez M., Gomez-Perez A. Methodologies, tools, and languages for building ontologies. Where is their meeting point? Data & Knowledge Engineering. Vol. 46. 2003. P. 41-64.
  10. Buitelaar P., Cimiano P., Magnini B. Ontology learning from texts: an overview. in ontology learning from text: methods, evaluation and applications. Computational Linguistics. 23 (4). 2005. P. 234-265.
  11. Simperl E., Mocho M. Achieving maturity: the state of practice in ontology engineering. In International Journal of Computer Science and Applications, Technomathematics Research Foundation. Vol. 7(1). 2010. P. 45-65.
  12. Buileaar P., Eigner T. Topic extraction from scientific literature for competency management. In The 7th International Semantic Web Conference PICKME, Germany. 2008. P. 55-67.
  13. Page L., Brin S., Terry W. The page rank citation ranking: bringing order to the Web. URL: http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf.
  14. Song R., Liu H., Wen J.-R., Ma W.-Y. Learning block importance models for Web pages. Proceedings of the 13th international conference on World Wide Web, New York. 2004. P. 203–
  15. Jones K. S. A statistical interpretation of term specificity and its application in retrieval. Journal of Documentation. Vol. 60 (5). 2004. P. 493-502.
  16. Nagarhalli T. P., Vaze V., Rana N. K. A review of current trends in the development of chatbot systems. 6th International Conference on Advanced Computing and Communication Systems (ICACCS). 2020. P. 706-710. DOI: 10.1109/ICACCS48705.2020.9074420.
  17. Lokman A.S., Ameedeen M.A. Modern Chatbot Systems: a technical review. Proceedings of the Future Technologies Conference (FTC) 2018. Advances in Intelligent Systems and Computing. Vol. 881. P. 1012–1023.
  18. Yin Z., Chang K.H., Zhang R. DeepProbe: information directed sequence understanding and chatbot design via recurrent neural networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2017. P. 2131–2139.
  19. Cui L., Huang S., Wei F., Tan C., Duan C., Zhou M. SuperAgent: a customer service chatbot for e-commerce websites. In: Proceedings of ACL 2017, System Demonstrations. P. 97–102.
  20. Adamopoulou E., Moussiades L. An Overview of Chatbot Technology. In: Maglogiannis, I., Iliadis, L., Pimenidis, E. (eds) Artificial Intelligence Applications and Innovations. AIAI 2020. IFIP Advances in Information and Communication Technology. Vol. 584. 2020. 373–383.
  21. Hien H.T., Cuong P.-N., Nam L.N.H., Nhung H.L.T.K., Thang L.D. Intelligent assistants in higher-education environments: the FIT-EBot, a chatbot for administrative and learning support. In: Proceedings of the Ninth International Symposium on Information and Communication Technology. 2018. P. 69–76.
  22. Zhezhnych P., Shilinh A. Linguistic analysis of user motivations of information content for university entrant’s Web-forum. International Journal of Computing. Vol 18(1). 2019. P. 67-74.

Post Author: Горященко Сергій

Translate