Надіслати статтю
вул. Інститутська 11, м. Хмельницький, 29016

ЕКСПЕРИМЕНТАЛЬНИЙ БЕЗПІЛОТНИЙ АВІАЦІЙНИЙ КОМПЛЕКС ДЛЯ ФОТОЗАХОПЛЕННЯ

EXPERIMENTAL UNMANNED AERIAL COMPLEX FOR PHOTOCAPTURING

Сторінки: 202-206. Номер: №2, 2019 (271)
Автори:
В. ЧИГІНЬ, П. МИХАЙЛИШИН
Національна академія сухопутних військ ім. Петра Сагайдачного
V. CHYHIN, P. MYHAILYSHYN
Land Forces National Academy
DOI: https://www.doi.org/10.31891/2307-5732-2019-271-2-202-206
Рецензія/Peer review : 17.03.2019 р.
Надрукована/Printed : 10.04.2019 р.

Анотація мовою оригіналу

В роботі опрацювали, виготовили  і випробували експериментальний безпілотний авіаційний комплекс з використанням безпілотного літального апарата – гексакоптера з рамою Tarrot 680 і автопілотом PixHawk PX4 – для фотозахоплення і знешкодження об’єкта. Автопілот Pixhawk володіє відкритим програмним кодом, що дозволило додатково приєднати бортовий комп’ютер Raspberry Pi з власними програмами керування. Стандартні налаштування автопілота змінили для його оптимальної взаємодії з бортовим комп’ютером. Елементи гексакоптера (регулятори моторів, відеокамеру, компас, акселерометр, GPS-приймач і барометр) підібрали і змінили їх вихідні параметри для підвищення надійності роботи комплексу.
Ключові слова: безпілотний авіаційний комплекс, гексакоптер, автопілот, регулятор моторів.

Розширена анотація англійською мовою

In a number of papers of one of authors, the possibility of creating a comprehensive system for the neutralization of another unmanned aircraft is considered. At the first stage of UAV detection, sound devices are used. Then its coordinates, direction and speed are measuring with the help of a stationary video system. Then the flight of own UAV takes place to the extrapolated coordinates of the stranger one. When capturing a UAV, it is chased by a special program installed on the on board computer. In the end, the another unmanned aircraft will be neutralized in a cheaper way, for example, using a grid thrower. Authors did not find in the available literature information about study of such method. Therefore, in this work we worked out and made the model of an unmanned aviation complex with the unmanned aerial vehicle hexacopter on a Tarrot 680 frame. It was used the autopilot PixHawk PX4 for researching the processes of photo capture and neutralization of the object. Pixhawk has an open code, making it possible to connect an additional board computer Raspberry Pi 3 with own control programs. Standard autopilot settings have been changed for optimal interaction with the on board computer. The unmanned aviation complex, used in experimental studies, includes the base element of the hexacopter, on which the Pixhawk flight controller and the Raspberry Pi on-board computer are installed. Here are fixed the GPS module, six motors and three rechargeable batteries. Key features of Raspberry Pi: A 64-bit quad-core 1.4 GHz processor, dual-band wireless network. It was installed the video camera module Raspberry Pi v2. It has an 8-megapixel sensor Sony Imx219 and supports video modes of 1080p30, 720p60 and VGA90. To control the various flight modes the remote control, laptop and WiFi router were used. Before starting the layout of unmanned aviation complex we pre-tested the setting of all its elements. The connection between the remote control and the hexacopter receiver was set on 2.4 MHz. This allowed for reliable communication at distances of about 300 m. In this case autopilot correctly responded to all commands from the control panel.
Keywords: unmanned aircraft complex, hexacopter, autopilot, motor controller

References

  1. Fedyshyn N. System of detection and escorting of flying objects with the use of sound and photographic equipment / Fedyshyn N., Chyhin V. // Actual problems of designing, manufacturing and exploitation of armaments and military equipment: materials of all countries. Sci.-Tech. Conf. Vinnytsya, – 2017. – p. 309 – 311.
  2. Fedyshin Nazar. Investigation of sound system for detecting flying objects using harmonics in an acoustic signal / Fedyshin Nazar, Chyhin Vasyl // Internat. conf. Young Scientists and Postgraduates “IEF-2017”. Uzhhorod, – 2017. – p. 13 – 15.
  3. Chyhin V.I. Measurement of coordinates of unmanned aerial vehicles using sound and video equipment / Chyhin V.I., Mykhailyshyn P.Ya. // 5th Ukrainian science-techn. conf. in the field of metrology “Technical Use of Measurement – 2019”. Slavske, – 2019, p. 10 – 12.
  4. Salnik Yu.P. Current state of equipping the Armed Forces of Ukraine with unmanned aviation complexes / Yu.P. Salnik, I. V Matala, V. A. Onishchenko // Science works of Air Forces Kharkiv University. – 2011. – issue 2 (28). – p. 46 – 51.
  5. Glotov V. Analysis of possibilities of using unmanned aerial vehicles for military purposes / V. Glotov, A. Gunina, Yu. Teleshchuk // Photogrammetry, geoinformation systems and cartography. – 2017. – issue 1 (33). – p. 139 – 146.
  6. Lavrovsky M. Development of unmanned aerial vehicles in Ukraine and the world for civil defence tasks / M.Z. Lavrovsky // Scientific Herald of NLTU of Ukraine. – 2017. – vol. 27, No.1. – p. 151 – 153.
  7. Babak V. Monitoring of thermal power engineering objects using unmanned aerial vehicles / V.P. Babak // Heat Industry Engineering. – 2017. – vol. 39, No. 2. – p. 25 – 30.
  8. Kroshka O. Development of quadcopter flight stabilization system: master thesis, Zaporizhzhia Nation. Techn. University / O. S. Kroshka. – Zaporizhzhia, 2017. – 84 p.
  9. URL: http://ardupilot.org/ardupilot/
  10. URL: https://pixhawk.org/
  11. Raspberrypi Pi. URL: https://www.raspberrypi.org
  12. Camera Module V2. URL: https://www.raspberrypi.org/products/camera-module-v2/
  13. UA. URL: https://arduino.ua/prod1152-gps-modyl-ublox-neo-m8n-s-kompasom
  14. Free charge regulator hobby power 30а. URL: https://hobbymania.com.ua/tovar.php?id_tovar=2814
  15. Turnigy Power Systems. URL: http://www.turnigy.com/radios/

Post Author: npetliaks

Translate