ПЛОСКА КРАЙОВА ЗАДАЧА ДИСКРЕТНОГО СЕРЕДОВИЩА
FLAT BOUNDARY VALUE PROBLEM OF A DISCRETE MEDIUM
Сторінки: 160-171. Номер: №5, 2020 (289)
Автори:
О.А. ДОРОФЄЄВ, О.В. БАГРІЙ, В.В. КОВТУН
Хмельницький національний університет
O.DOROFEYEV, O.BAHRII, V. KOVTUN
Khmelnytskyi National University
DOI: https://www.doi.org/10.31891/2307-5732-2020-289-5-160-171
Рецензія/Peer review : 05.11.2020 р.
Надрукована/Printed : 27.11.2020 р.
Анотація мовою оригіналу
Розглядаються статичні, геометричні та фізичні співвідношення, а також крайові умови, що формують крайову задачу плоскої розрахункової області, заповненої фізично дискретним матеріалом, який працює в умовах плоско-деформованого напруженого стану. Наводиться математичне та скінчено-елементне формулювання задачі. Описуються ітераційні процедури розв’язання плоскої крайової задачі механіки дискретного середовища методом скінчених елементів.
Ключові слова: плоска крайова задача; дискретне середовище; внутрішнє кулонове тертя; дилатансія.
Розширена анотація англійською мовою
The article deals with the defining relations of the plane boundary value problem of a discrete medium and specific methods of its solution. A boundary value problem is considered to assess the state of a discrete medium. Its physical ratios should reflect the fundamental features of the deformation of the discrete medium: the influence of internal Coulomb friction on the deformation process at all stages of loading; occurrence of volume deformations during shear (dilatancy); significant influence of the type of stress-strain state on the nature of the laws of discrete materials deformation. The problem is formulated as a boundary value problem of a flat physically nonlinear inhomogeneous area filled with a discrete material that does not perceive tensile stresses and counteracts external perturbations only due to internal dry pendant friction. The material is considered to be quasi-continuous, which is deformed under conditions of plane deformation according to the experimentally established nonlinear laws of Coulomb’s rheological model. The hypothesis of small deformations is introduced, which allows using linear differential Cauchy dependences to fulfil the condition of deformation continuity. It is assumed that the stress-strain state of the calculation area is estimated only by the stresses and strains that occur in the plane of deformation perpendicular to the axis with zero deformation. Mathematical and finite-element formulation of the problem is given. Iterative procedures for solving a plane boundary value problem of the mechanics of a discrete medium by the finite element method are described.
Keywords: flat boundary value problem, discrete environment, internal Coulomb’s friction, dilatation.
References
- Kovtun V. V. Osnovy mekhaniky dyskretnykh materialiv : monohrafiia / V. V. Kovtun, O. A. Dorofieiev. – Khmelnytskyi : KhNU, 2018. – 131 s.
- Kovtun V. V. Eksperymentalne obgruntuvannia vykhidnykh polozhen mekhaniky dyskretnoho seredovyshcha i vyznachennia rozrakhunkovykh parametriv modelei / V. V. Kovtun, O. A. Dorofieiev // Herald of Khmelnytskyi National University. – 2011. – № 3. – S. 20–27.
- Reynolds O. Experiments showing dilatancy, a property of granular material / O. Reynolds. – Proc. Roy. Inst. 2, 1886. – P. 354–363.
- s. 1158925 SSSR. Pribor dlya issledovanij svojstv grunta v usloviyah ploskoj deformacii / V. V. Kovtun, V. G. Beznosyuk, N.A. Mazur. – № 3673183/29-33 ; zayavl. 16.12.83 ; opublik. 30.05.85, Byul. № 20.
- s. 1141158 SSSR. Nagruzochnoe ustrojstvo dlya ispytanij gruntov v priborah trehosnogo szhatiya / V. V. Kovtun, V.G.Beznosyuk, N. A. Mazur. – № 3673169/29-33 ; zayavl. 16.12.83 ; opublik. 23.02.85, Byul. № 7.
- Kovtun V. V. Vyznachalni spivvidnoshennia mekhaniky dyskretnoho seredovyshcha / V. V. Kovtun // Herald of Khmelnytskyi National University. – 2008. – №5. – S. 69–76.
- 11675 Ukraina, MPKG01N 33/24. Sposib vyznachennia deformatsiinykh parametriv porystykh materialiv za rezultatamy laboratornykh vyprobuvan / V. V. Kovtun, O. V. Bahrii ; vlasnyk Khmeln. nats. un-t. – № 200503929 ; zaiavl. 25.04.2005 ; opublik. 16.01.2006, Biul. № 1. – 3 s.
- 18390 Ukraina, MPKG01N 33/24. Prystrii dlia laboratornykh vyprobuvan porystykh materialiv / V. V. Kovtun, O. V. Bahrii ; vlasnyk Khmeln. nats. un-t. – № 200603878 ; zaiavl. 07.04.2006 ; opublik. 15.11.2006, Biul. № 11. – 4 s.
- Zenkevich O. Metod konechnyh elementov v tehnike / O. Zenkevich. – M. : Mir, 1975. – 541 s.
- Kovtun V. V. Metod konechnyh elementov v portovom gidrotehnicheskom stroitelstve / V. V. Kovtun, V. T. Bugaev – M. : Mortehinformreklama, 1987. – 48 s.
- Bahrii O. V. Deformuvannia seredovyshcha z urakhuvanniam vnutrishnoho kulonovoho tertia v umovakh ploskoi deformatsii : dys. … kand. tekhn. nauk : 01.02.04 / Bahrii Olena Viktorivna ; Min-vo osvity i nauky Ukrainy, Khmelnytskyi natsionalnyi universytet. – Khmelnytskyi, 2009. – 145 s.