МОДЕЛЮВАННЯ ПОВЕДІНКИ ОПЕРАТОРА ТЕХНОЛОГІЧНОГО ПРОЦЕСУ В СТРЕСОВИХ СИТУАЦІЯХ
SIMULATION OF TECHNOLOGICAL OPERATION OPERATOR BEHAVIOR IN STRESS SITUATIONS
Сторінки: 12-16. Номер: №5, 2020 (289)
Автори:
Р. КАМІНСЬКИЙ, Н. ШАХОВСЬКА
Національний університет «Львівська політехніка»
R. KAMINSKYY, N. SHAKHOVSKA
Lviv Polytechnic National University
DOI: https://www.doi.org/10.31891/2307-5732-2020-289-5-81-88
Рецензія/Peer review : 13.10.2020 р.
Надрукована/Printed : 27.11.2020 р.
Анотація мовою оригіналу
Приведена математична модель керованого людиною-оператором технологічного процесу з точки зору математичної теорії систем. Для моделювання використано апарат теорії множин. Модель враховує вплив людського фактору на якість керування технологічним процесом. Розглянуто поняття стресостійкості людини-оператора. Вводиться показник стресостійкості та наведена йог геометрична інтерпретація. Представлена модель виходу людини-оператора з стресового стану, яка враховує його індивідуальність.
Ключові слова: людина-оператор, управління технологічним процесом, стрес оператора, крива навчання.
Розширена анотація англійською мовою
The mathematical model of the human-operator of technological process from the point of view of the mathematical theory of systems is developed. The apparatus of set theory was used for modelling. The model takes into account the influence of the human factor on the quality of process control. The concept of stress-resistance of the human operator is considered. The stress resistance index is introduced and the geometric interpretation is given by the yogi. The model of exit of the person-operator from a stressful condition which considers its individuality is resulted. The authors of this study proposed an approach to establish the value of the stress indicator. The basis of this indicator are the following four general characteristics, namely: experience and level of qualification of the human operator, the working environment and the amount of information about changes in the parameters controlled by the operator, the technological process. The presented models of human-machine interface, indicator of human operator stress and operator exit from stress can be interpreted as an attempt to formalize the operator’s activity in human-machine control systems of many types of technological processes. From a practical point of view, these three models are focused on the use of quantitative indicators and characteristics, not only of the human operator, but also to some extent relate to both the technological process and the environment. The proposed indicator of human resilience to the stress, already using the appropriate scale of expert evaluation of its four elements, provides an opportunity to select the best from a group of candidates for the position of operator. This indicator, given the quantitative values of its elements, represents the relationship between the professional level and experience of the operator, the working environment and the amount of information provided. The model of the dynamics of the operator’s exit from the stress state follows from the results of the analysis of the stress resistance indicator. Analysis of numerous data on human stress shows that the way out of stress is not instantaneous, but lasts for some time. In addition, the dynamics of the restoration of a person’s functional state to normal is usually nonlinear and monotonous, and there may be a final nervous and mental stress, which accelerates his fatigue.
Keywords: human operator, technological process management, operator stress, learning curve.
References
- Prysnyakova L., Prysnyakov V. To model human behavior. Psychology and society. 2004. № 3. P. 91–
- Mochurad L.I., Boyko N.I., Yatskiv M.V. Modeling of human stress situation in automated process control systems. Scientific Bulletin of NLTU of Ukraine, 2020, vol. 30, № 1. P. 152–
- Bodrov V. A. Information stress: textbook for universities. M.: PER SE, 2000. 352 p.
- Havlikova M., Jirgl M., Bradac Z. Human Reliability in Man-Machine Systems. Procedia Engineering 100 (2015). P. 1207–1214.
- Jiacai Huang, YangQuan Chen, Haibin Li, Xinxin Shi.Fractional Order Modeling of Human Operator Behavior with Second Order Controlled Plant and Experiment Research[J]. IEEE/CAA Journal of Automatica Sinica, 2016, 3(3): 271-280.
- Marie Havlikova, Miroslav Jirglb, Zdenek Bradacc. Human Reliability in Man-Machine Systems / 25th DAAAM International Symposium on Intelligent Manufacturing and Automation, DAAAM 2014/ Procedia Engineering Volume 100, 2015, Pages 1207-1214
- Modern methods and tools for determining and diagnosing emotional stress: a monograph / for general. ed. O.P. – Vinnytsia: VNTU, 2010. 228 p.
- D. Mesarovic and Yasuhiko Takahara. GENERAL SYSTEMS THEORY: MATHEMATICAL FOUNDATIONS. Mathematics in science and engineering Volume 113, ACADEMIC PRESS New York, San Francisco, London 1975. 316 p.
- Yurii Kryvenchuk, Ihor Helzynskyy, Tetiana Helzhynska, Nataliya Boyko, Roman Danel. URL: http://ceur-ws.org/Vol-2488/paper26.pdf.
- Kralikova, R., Dzunova, L., Pinosova M., Wessely E. & Koblasa F. (2019). Man-Machine-Environment System Analyses and Impact of Environment Factors to Productivity and Health of Employees, Proceedings of the 30th DAAAM International Symposium, pp. 0131-0138, B. Katalinic (Ed.), Published by DAAAM International, ISBN 978-3-902734-22-8, ISSN 1726-9679, Vienna, Austria. DOI: 10.2507/30th.daaam.proceedings.
- Workplace Stress: A collective challenge – Report, 04 April 2016, 978-92-2-130642-9[ISBN]. URL: https://www.ilo.org/safework/info/publications/WCMS_466547/lang–en/index.htm
- Kopyt, K. Zużewicz, P. Bartuzi. Experimental identification of a mathematical model of human operator working under mental stress / Acta of Bioengineering and Biomechanics Original paper Vol. 19, No. 3, 2017. – P. 177–185.
- Savic, G. Knezevic and G. Opacic. A mathematical model of stress reaction: Individual differences in threshold and duration / Psychobiology 2000, 28 (4), 581-592. 14. Filippov M.M. Psychophysiology of functional states: Textbook. Benefit. Kiev: MAUP, 2006. 240 p.
- Lozhkin G.V., Povyakel N.I. Practical psychology in the systems “man – technology”. Kiev: MAUP, 2003. 296 p.
- Mathematical modeling of learning. Peter F. W. PREECE The School of Education, University of Exeter, St. Luke 3, Exeter, EX 1 2L U, England // JOURNAL OF RESEARCH IN SCIENCE TEACHING VOL. 21, NO. 9, PP. 953-955 (1984).
- Learning curve models and applications: Literature review and research directions Michel Jose Anzanello, Flavio Sanson Fogliatto. Federal University of Rio Grande do Sul (UFRGS), Av. Osvaldo Aranha, 99 – 5 andar, Porto Alegre e CEP 90.035-190, Rio Grande do Sul, Brazil // International Journal of Industrial Ergonomics 41 (2011) 573–583.
- Levente Malyusz and Attila Pem / Predicting future performance by learning curves. Procedia – Social and Behavioral Sciences 119 (2014) 368–376.
- An almost learning curve model for manual assembly performance improvement. Vytautas Kleizaa, Justinas Tilindisb. Published online: October 10, 2016. Nonlinear Analysis: Modelling and Control, Vol. 21, No. 6, 839–850.
- LEARNING CURVES: AN ALTERNATIVE ANALYSIS THESIS Sharif F. Harris, URL: https://apps.dtic.mil/dtic/tr/fulltext/u2/1055207.pdf
- Learning Rate Sensitivity Model Nichols F. Brown System of Systems Engineering Office Systems Engineering Division Timothy P. Anderson Integrated Cost and Schedule Analysis Department Systems Engineering Division. Presented at the 2018 ICEAA Professional Development & Training Workshop. URL:iceaaonline.com