ВПЛИВ МОМЕНТНОЇ НЕЗРІВНОВАЖЕНОСТІ ТА ПОЛОЖЕННЯ ЦЕНТРУ ЖОРСТКОСТІ НА ВІБРОАКТИВНІСТЬ ГОРИЗОНТАЛЬНЫХ БАРАБАННИХ МАШИН
INFLUENCE OF INSTANT IMBALANCE AND POSITION OF HARDNESS CENTER ON VIBROACTIVITY OF HORIZONTAL DRUM MACHINES
Сторінки: 105-111. Номер: №3, 2021 (297)
Автори:
А.В. ГОРОШКО, І.В. ДРАЧ, В.П. ТКАЧУК
Хмельницький національний університет
Аndrii V. GOROSHKO, Ilona V. DRACH, Vitalii P. TKACHUK
Khmelnytskyi National University
DOI: https://www.doi.org/10.31891/2307-5732-2021-297-3-105-111
Надійшла / Paper received : 27.04.2021 р
Надрукована / Paper Printed : 30.06.2021 р
Анотація мовою оригіналу
В роботі на прикладі конструкції пральної машини досліджено вплив моментної незрівноваженості та положення центру жорсткості на віброактивність системи бак-барабан. Створено математичну модель системи у вигляді рівнянь коливань багатозв’язної системи бак-барабан на пружних підвісах. Модель перевірялась експериментально, а відповідна імітаційна модель досліджувалась у Simulink. Сформульовано основні вимоги до конструкції горизонтальних роторних машин барабанного типу з погляду їх мінімальної віброактивності.
Ключові слова: вібрація, барабан, горизонтальний ротор, жорсткість.
Розширена анотація англійською мовою
The issues of reducing the vibration caused by rotating rotors at the frequency of the first rotor harmonic (so-called rotor vibration) are among the most important in the design, manufacture and operation of almost all types of modern rotary machines. The washing machine as an object of study of the dynamics and reduction of vibration and noise is of particular interest due to the constant presence of randomly located and wandering imbalance of laundry in the drum and low requirements for accuracy of its manufacture and assembly of parts and assemblies.
A mathematical model of oscillations of a multiconnected tank-drum system on elastic suspensions for the main types of machines and spin centrifuges with a horizontal axis of rotation is created. The model is developed in a linear formulation based on the Lagrange equation of the II kind for a washing machine. The accuracy and adequacy of the mathematical model was tested directly on the field object by measuring noise, vibration, forces in the supports and stress distribution in the individual elements and components of the machine in the entire range of drum speeds.
Studies of the nature of system oscillations depending on the change in position and attachment points of elastic and damping elements were performed using simulation in the Simulink environment. As a result of research, the basic requirements for the layout of horizontal rotary machines of the drum type were experimentally confirmed: the center of mass of the tank must lie on the axis of rotation of the drum; the axis of rotation of the drum should be the main central axis of inertia of the tank; the center of mass of the tank must coincide with the center of mass of the loaded drum; the center of rigidity of the system of elastic supports must coincide with the center of gravity of the tank, and the main axes of rigidity – with the main central axes of inertia of the tank; the main axes of the constant viscous friction must coincide with the main central axes of inertia of the tank.
The results of the theoretical study were applied to the problem of evaluating the efficiency of a liquid auto-balancing device for a proper squeezing machine depending on its dynamics.
Keywords: vibration, drum, horizontal rotor, stiffness.
References
- Ribeiro, E. A., Pereira, J. T., & Bavastri, C. A. (2015). Passive vibration control in rotor dynamics: optimization of composed support using viscoelastic materials. Journal of Sound and Vibration, 351, 43-56
- Osinski, Z. (Ed.). (2018). Damping of vibrations. CRC Press.
- Shen, Y., Chen, L., Yang, X., Shi, D., & Yang, J. (2016). Improved design of dynamic vibration absorber by using the inerter and its application in vehicle suspension. Journal of Sound and Vibration, 361, 148-158.
- MacCamhaoil, M. (2016). Static and dynamic balancing of rigid rotors. Bruel & Kjaer application notes, BO, 0276-12.
- Goroshko, A., Ostaševičius, V., & Royzman, V. (2016). Balancing of turbomachine rotors by increasing the eccentricity identification accuracy. Mechanics, 22(3), 206-211.
- S K Wan, X H Li, W J Su, et al. Active damping of milling chatter vibration via a novel spindle system with an integrated electromagnetic actuator. Precision Engineering, 2019, 57: 203-210.
- H W Fan, J J Zhi, B J Shi, et al. Adaptive rotor balancing algorithm and single-disk rotation test for electromagnetic balancer. Journal of Xi’an Jiaotong University, 2018, 52(8): 15-21, 29.
- Pan, X., Lu, J., Huo, J. et al. A Review on Self-Recovery Regulation (SR) Technique for Unbalance Vibration of High-End Equipment. Chin. J. Mech. Eng. 33, 89 (2020). https://doi.org/10.1186/s10033-020-00514-7
- C Peng, J X He, M T Zhu, et al. Optimal synchronous vibration control for magnetically suspended centrifugal compressor, Mechanical Systems and Signal Processing, 2019, 132: 776-789.
- V Goncharov, G Filimonikhin, K Dumenko, et al. Studying the peculiarities of balancing of flexible double-support rotors by two passive automatic balancers placed near supports. Eastern-European Journal of Enterprise Technologies, 2016, 4(7): 4-9.
- Royzman, V., Drach, I., Tkachuk, V., Pilkauskas, K., Čižauskas, G., & Šulginas, A. (2018). Operation of passive fluid self-balancing device at resonance transition regime. Mechanics, 24(6), 805-810.
- Xiao, L., Zhang, S. (2017). Analysis and optimization of drum washing machine vibration isolation system based on rigid-flexible virtual prototype model. Journal of Vibroengineering Vol. 19, Issue 3. P. 1653-1664
- Drüke, S., Bicker, R., Schuller, B., Henke, C., Trächtler, A. (2019) Rotordynamic Instabilities in Washing Machines. In: Cavalca K., Weber H. (eds) Proceedings of the 10th International Conference on Rotor Dynamics – IFToMM. IFToMM 2018. Mechanisms and Machine Science, vol 61. Springer, Cham
- Ulasyar, A., Lazoglu, I. Design and analysis of a new magneto rheological damper for washing machine. J Mech Sci Technol 32, 1549–1561 (2018). https://doi.org/10.1007/s12206-018-0308-4
- Drach I, Goroshko A, Dwornicka R. Design Principles of Horizontal Drum Machines with Low Vibration. Advances in Science and Technology Research Journal. 2021;15(2):258-268. https://doi.org/10.12913/22998624/136441
- Fetisov, V. G., Alekhin, S. N., & Petrosov, S. P. (2012). Study of Nonhomogeneous Equations with Variable Coefficients Describing Washing Machines Vibration. European Researcher, (5-2), 609-612.