Надіслати статтю
вул. Інститутська 11, м. Хмельницький, 29016

АНТИМІКРОБНІ ВЛАСТИВОСТІ ЛІГНІНУ ЯК ПРИРОДНОГО БІОЦИДУ ДЛЯ ЗАХИСТУ ТЕКСТИЛЮ

ANTIMICROBIAL PROPERTIES OF LIGNINE AS A NATURAL BIOCIDE FOR TEXTILE PROTECTION

Сторінки: 142-153. Номер: №4, 2021 (299)
Автори:
Т.А. ПОПОВИЧ
Херсонський державний університет
ORCID: 0000-0001-7449-9949
Г.В. МІЩЕНКО
Херсонський національний технічний університет
ORCID: 0000-0002-0336-1026
С.П. БЕСЧАСНИЙ
Херсонський державний університет
ORCID: 0000-0002-7423-4112
T.A. POPOVYCH
Kherson State University
ORCID: 0000-0001-7449-9949
A.V. MISHCHENKO
Kherson National Technical University
ORCID: 0000-0002-0336-1026
S.P. BESCHASNYI
Kherson State University
ORCID: 0000-0002-7423-4112
DOI: https://www.doi.org/10.31891/2307-5732-2021-299-4-142-153
Рецензія/Peer review : 08.08.2021 р.
Надрукована/Printed : 26.08.2021 р.

Анотація мовою оригіналу

Антибактеріальна функціоналізація є однією з важливих галузей досліджень в текстильній промисловості, але такі біополімери, як лігнін і пектин, що мають гарну біосумісність, антиоксидантні та антимікробні властивості, на вітчизняному ринку застосовуються в основному в будівельній та харчовій промисловості. Було досліджено антимікробну активність натрій лігносульфонату, яблучного пектину та їх суміші до бактерій грампозитивних (Staphylococus aureus) і грамнегативних штамів (Escherichia coli, Pseudomonas аeruginosa). З′ясовано, що лігнін в порівнянні з пектином проявляє більшу антибактеріальну активність і найбільш ефективний проти бактерій Staphylococus aureus. Посилення в 2-4 рази антибактеріального ефекту по відношенню до всіх мікроорганізмів спостерігалося при сумісному застосуванні лігніну і пектину, як синергетичної суміші. Дана робота може бути корисна при створенні антимікробних композицій для захисту текстильних матеріалів.
Ключові слова: антимікробні агенти, антимікробний текстиль, лігнін, пектин.

Розширена анотація англійською мовою

The functionalization of antibacterial drugs is one of the important areas of research in the textile industry. It uses traditional antimicrobial agents of synthetic or natural origin, and generates new biopolymers with useful properties. Some of them, such as lignin and pectin, have good biocompatibility, antioxidant and antimicrobial properties, but the domestic market uses them mainly in the construction and food industries, respectively.
The antimicrobial activity of sodium lignosulfonate, apple pectin and their mixture against gram-positive bacteria (Staphylococus aureus) and gram-negative strains (Escherichia coli, Pseudomonas aeruginosa) was studied. Experimental results have shown that lignin exhibits slightly higher antibacterial activity compared to pectin and is more effective against Staphylococcus aureus in terms of minimal bactericidal and minimal inhibitory concentrations. Determination of cytotoxicity of sodium lignosulfonate by MTT showed the non-toxicity of this biocide for human cells.
It was found that the antimicrobial behavior of lignosulfonates, pectins and their mixtures differs in relation to gram-positive and gram-negative strains of bacteria. It appeared that the most vulnerable to bactericides are gram-positive strains of Staphylococcus aureus due to the possible absence of double-membrane wall cells.
In addition, the simultaneous use of lignin and pectin as a synergistic mixture showed an increase in antibacterial action against all microorganisms by 2-4 times.
The antimicrobial effect of the studied biocides was compared to the traditional antimicrobial drug argent nitrate, which is widely used in various industries, including textile production. It was found that lignin and pectin in amounts of 1-5 мг/см3 have the same antimicrobial effect for gram-positive strains and 10-20 мг/cм3 – for gram-negative bacteria, as a solution of AgNO3 with a concentration of 0.2 мг/см3. Higher concentrations of lignin and pectin can be offset by significantly lower prices compared to argentum salts, as well as greater environmental and medical safety for human health. In addition, lignin is potentially available in large quantities as a by-product from the pulp industry and lignocellulosic bioprocessing plants.
This piece of work may be useful in future when creating antimicrobial compositions for textiles.
Keywords: antimicrobials, antimicrobial textiles, lignin, pectin.

References

  1. Bockmühl D. P. Laundry and textile hygiene in healthcare and beyond / D. P. Bockmühl, J. Schages, L. Rehberg // Microbial Cell. – 2019. – V. 6 (7). – R. 299-306. URL: 10.15698/mic2019.07.682
  2. Krichevskij G. E. Proshloe, nastoyashee i budushee mirovogo tekstilya. Revolyushionnoe i evolyucionnoe razvitie / G. E. Krichevskij // Tezisy dokladov Mezhdunarodnoj nauchno-prakticheskoj konferencii i shkoly molodyh uchenyh «Segodnya i zavtra medicinskogo, tehnicheskogo i zashitnogo tekstilya. Rol tradicionnyh i vysokih tehnologij («Medtekstil – 2012»), g. Moskva, 8-9 oktyabrya 2012 g. – Ivanovo : OAO «Izdatelstvo «Ivanovo», 2012. – S. 5.
  3. Babu K. M. Bioactive antimicrobial agents for finishing of textiles for health care products / K. M. Babu, K. B. Ravindra // The Journal of The Textile Institute. – 2015. – V. 106 (7). – P. 706-717. URL: https://doi.org/10.1080/00405000.2014.936670
  4. Orhan M. Triclosan applications for biocidal functionalization of polyester and cotton surfaces / M. Orhan // Journal of Engineered Fibers and Fabrics. – 2020. V. 15. – P. 1-11. URL: https://doi.org/10.1177/1558925020940104
  5. Jones I. A. Biocide use in the antimicrobial era: a review / I.A. Jones, L. T. Joshi // Molecules. – 2021. – 26 (8) – 2276. URL: https://doi.org/10.3390/molecules26082276
  6. Lobo F. M. An overview of the antimicrobial properties of lignocellulosic materials / F. M. Lobo, A .R. Franco, E. M. Fernandes, R .L. Reis // Molecules. – 2021. – 26 (6). – 1749. URL: https://doi.org/10.3390/molecules26061749
  7. Kildeeva N. R. Elektroformirovanie ultratonkih volokon iz aminosoderzhashih polimerov dlya mediciny i zashity okruzhayushej sredy / N. R. Kildeeva, G. A. Vihoreva // Tezisy dokladov Mezhdunarodnoj nauchno-prakticheskoj konferencii i shkoly molodyh uchenyh «Segodnya i zavtra medicinskogo, tehnicheskogo i zashitnogo tekstilya. Rol tradicionnyh i vysokih tehnologij («Medtekstil – 2012»), g. Moskva, 8-9 oktyabrya 2012 g. – Ivanovo : OAO «Izdatelstvo «Ivanovo», 2012. – S. 19-20.
  8. Baranova O. N. Celyuloznye polotna, modificirovannye gidrozolem serebra s primeneniem rastitelnyh dubitelej / O. N. Baranova, L. I. Zolina // Tezisy dokladov Mezhdunarodnoj nauchno-prakticheskoj konferencii i shkoly molodyh uchenyh «Segodnya i zavtra medicinskogo, tehnicheskogo i zashitnogo tekstilya. Rol tradicionnyh i vysokih tehnologij («Medtekstil – 2012»), g. Moskva, 8-9 oktyabrya 2012 g. – Ivanovo : OAO «Izdatelstvo «Ivanovo», 2012. – S. 29.
  9. Glushenko N. N. Biologicheskaya aktivnost netkannogo lnyanogo polotna s nanochasticami medi / N. N. Glushenko, A. A. Rahmetova, I. P. Olhovskaya, O. A. Bogoslovskaya, V. N. Galashina, N. S. Dymnikova // Tezisy dokladov Mezhdunarodnoj nauchno-prakticheskoj konferencii i shkoly molodyh uchenyh «Segodnya i zavtra medicinskogo, tehnicheskogo i zashitnogo tekstilya. Rol tradicionnyh i vysokih tehnologij («Medtekstil – 2012»), g. Moskva, 8-9 oktyabrya 2012 g. – Ivanovo : OAO «Izdatelstvo «Ivanovo», 2012. – S. 32-33.
  10. Jacob J. Use of Ginger Nanofibers for the Preparation of Cellulose Nanocomposites and Their Antimicrobial Activities / J. Jacob, J. T. Haponiuk, S. Thomas, G. Peter, S. Gopi // Fibers. – 2018. – V. 6 (4). – 79. URL: https://doi.org/10.3390/fib6040079
  11. Morena A. G. Hybrid Tellurium-Lignin Nanoparticles with Enhanced Antibacterial Properties / A. G. Morena., A. Bassegoda, J. Hoyo, T. Tzanov // ACS Applied Materials and Interfaces. – 2021. – V. 13 (13). – P. 14885-14893. URL: https://doi.org/10.1021/acsami.0c22301
  12. Sunthornvarabhas J. Antimicrobial Tendency of Bagasse Lignin Extracts by Raman Peak Intensity / J. Sunthornvarabhas, P. Rungthaworn, U. Sukatta // Sugar Tech. – 2020. – V. 22. – P 697-705. URL: https://doi.org/10.1007/s12355-019-00778-x
  13. Sunthornvarabhas J. Antimicrobial kinetic activities of lignin from sugarcane bagasse for textile product / J. Sunthornvarabhas, S. Liengprayoon, T. Suwonsichon // Industrial Crops and Products. – 2017. – V. 109 (15). – P. 857-861. URL: https://doi.org/10.1016/j.indcrop.2017.09.059
  14. Galkin M. From stabilization strategies to tailor-made lignin macromolecules and oligomers for materials / M. Galkin // Current Opinion in Green and Sustainable Chemistry. – 2021. – V. 28. – 100438. URL: https://doi.org/10.1016/j.cogsc.2020.100438
  15. Pletzer D. Rapid microwave-based method for the preparation of antimicrobial lignin-capped silver nanoparticles active against multidrug-resistant bacteria / D. Pletzer, J. Asnis, Y. N. Slavin, R. W. Hancock, H. Bach, K. Saatchi // International Journal of Pharmaceutics. – 2021. – V. 596. – R. 120-129. URL: https://doi.org/10.1016/j.ijpharm.2021.120299
  16. Aadil K. R. Green synthesis of silver nanoparticles using acacia lignin, their cytotoxicity, catalytic, metal ion sensing capability and antibacterial activity / K. R. Aadil, N. Pandey, S .I. Mussatto, H. Jha // Journal of Environmental Chemical Engineering. – 2019. – V. 7 (5). – 103296. URL: https://doi.org/10.1016/j.jece.2019.103296
  17. Juikar S. J. Microbial Production of Nanolignin from Cotton Stalks and Its Application onto Cotton and Linen Fabrics for Multifunctional Properties / S. J Juikar, V. Nadanathangam // Waste and Biomass Valorization volume. – 2020. – V. 11. – P. 6073-6083. URL: https://doi.org/10.1007/s12649-019-00867-8
  18. Salieba L. V. Pektyn: struktura, vlastyvosti, biolohichni funktsii / L. V. Salieba // Visnyk KhNTU. – 2018. – № 2 (65). – S. 143-149.
  19. Domínguez-Robles J. Lignin for pharmaceutical and biomedical applications – Could this become a reality? / J. Domínguez-Robles, A. Cárcamo-Martínez, S. A. Stewart, R.F. Donnelly, E. Larrañeta, M. Borrega // Sustainable Chemistry and Pharmacy. – 2020. – V. 18. – 100320. URL: https://doi.org/10.1016/j.scp.2020.100320
  20. № 103645 UA MPK B01J20/00 C01B31/08 Sposib oderzhannia vuhletsevoho adsorbentu iz lihnino-tseliuloznoi syrovyny / Sych N. V.; zaiavnyk ta vlasnyk Instytut sorbtsii ta problem endokrynolohii NAN Ukrainy. – u201505969; zaiavl. 17.06.2015; opubl. 25.12.2015, Biul. № 24/2015.
  21. № 78908 UA MPK B01J20/22 Tekhnolohiia vyrobnytstva sorbentu na osnovi lihninu / Erofieiev V. A.; zaiavnyk ta vlasnyk Sevastopolskyi natsionalnyi universytet yadernoi enerhetyky ta promyslovosti. – u201209109; zaiavl. 24.07.2012; opubl. 10.04.2013, biul. № 7/2013.
  22. № 135646 UA MPK A61L2/16 D06M13/00. Sposib otrymannia tekstylnykh materialiv z antymikrobnymy vlastyvostiamy / Martyrosian I. A., Pakholiuk O. V.; zaiavnyk ta vlasnyk Odeska natsionalna akademiia kharchovykh tekhnolohii. – u201901165; zaiavl. 05.02.2019; opubl. 10.07.2019, Biul. № № 13/2019.
  23. № 123992 UA MPK D06M11/13 D06M11/65. Tekstylni materialy, yaki maiut antymikrobni vlastyvosti / Svami Rohini; zaiavnyk ta vlasnyk LIVINGUARD AG. – a201709419; zaiavl. 29.02.2016; opubl. 07.07.2021, Biul. № 27/2021.
  24. № 91619 UA MPK D06M11/00 D06M23/08 Intelektualnyi bakterytsydnyi tekstyl / Volkov O. I.; zaiavnyk ta vlasnyk Kyivskyi natsionalnyi universytet tekhnolohii ta dyzainu. – a200814057; zaiavl. 05.12.2008; opubl. 10.08.2010, Biul. № 15/2010.
  25. № 51203 UA MPK D06M11/00 D06M13/00 Sposib nadannia antymikrobnykh vlastyvostei ta stiikosti do mikrobiolohichnoho ruinuvannia tekstylnym materialam, shcho mistiat vovnu / Nedilko V. V.; zaiavnyk ta vlasnyk Khersonskyi derzhavnyi tekhnichnyi universytet. – u2009132654 zaiavl. 21.12.2009; opubl. 12.07.2010, Biul. № 13/2010.
  26. № 10203 UA MPK D06M11/00 D06M13/00 Sposib nadannia antymikrobnykh vlastyvostei tseliuloznym tekstylnym materialam / Sumska O. P.; zaiavnyk ta vlasnyk Khersonskyi derzhavnyi tekhnichnyi universytet. – u200502098; zaiavl. 09.03.2005; opubl. 15.11.2005, Biul. № 11/2005.
  27. № 26328 UA MPK D06M13/00 D06P3/58 Sposib antymikotychnoi obrobky tekstylnykh vyrobiv / Kosinov M. V.; zaiavnyk ta vlasnyk Kosinov Mykola Vasylovych. – u200705969; zaiavl. 29.05.2007; opubl. 10.09.2007, Biul. № 14/2007.
  28. № 117185 UA MPK A61K33/38 B82Y5/00 Sposib otrymannia tekstylnykh materialiv z antymikrobnymy vlastyvostiamy / Skyba M.I., Pivovarov O.A.; zaiavnyk ta vlasnyk Derzhavnyi vyshchyi navchalnyi zaklad “Ukrainskyi derzhavnyi khimiko-tekhnolohichnyi universytet”. – u201610643; zaiavl. 24.10.2016; opubl. 26.06.2017, Biul. № 12/2017
  29. № 74853 UA MPK A61L15/12 Kompozytsiia dlia nadannia medychnym tekstylnym materialam antymikrobnykh vlastyvostei z prolonhovanoiu diieiu / Nazarchuk O. A.; zaiavnyk ta vlasnyk Vinnytskyi natsionalnyi medychnyi universytet im. M.I.Pyrohova. – u201205692; zaiavl. 10.05.2012; opubl. 12.11.2012, Biul. № 21/2012.
  30. № 68230 UA MPK D06M11/00 D06M13/00 Sposib nadannia antymikrobnykh vlastyvostei vovnovmisnym tekstylnym materialam spetsialnoho pryznachennia / Nedilko V. V.; zaiavnyk ta vlasnyk Khersonskyi derzhavnyi tekhnichnyi universytet. – u201107740; zaiavl. 20.06.2011; opubl. 26.03.2012, Biul. № 6/2012.
  31. Tao J. Lignin – An underutilized, renewable and valuable material for food industry / J. Tao, S. Li, F. Ye, Y. Zhou, L. Lei., G. Zhao // Food science and nutrition. – 2020. – V. 60 (12). – P. 2011-2033. URL: https://doi.org/10.1080/10408398.2019.1625025
  32. Gargulak J. D. Commercial Use of Lignin-Based Materials / J. D. Gargulak, S. E. Lebo // ACS Symposium Series. – 1999. – V. 742 (15). – R. 304-320. URL: 10.1021/bk-2000-0742.ch015
  33. Ten E. Functionalized Polymers from Lignocellulosic Biomass: State of the Art / E. Ten, W. Vermerris // Polymers. – 2013. – V. 5 (2). – P. 600-642. URL: https://doi.org/10.3390/polym5020600
  34. Ndaba B. Influence of extraction methods on antimicrobial activities of lignin-based materials: A review / B. Ndaba, A. Roopnarain, M. O. Daramola, R. Adeleke // Sustainable Chemistry and Pharmacy. – 2020. – V. 18. – 100342. URL: 10.1016/j.scp.2020.100342
  35. Li T. The current and emerging sources of technical lignins and their applications / T. Li, S. Takkellapati // Biofuels Bioproducts Biorefining. – 2018. – V. 12 (5). – P. 756-787. URL: https://doi.org/10.1002/bbb.1913
  36. Garcíaa A. Antioxidant and biocide behaviour of lignin fractions from apple tree pruning residues / A. Garcíaa, G. Spigno, J. Labidi // Industrial Crops and Products. – 2017. – V. 104. – P. 242-252. URL: https://doi.org/10.1016/j.indcrop.2017.04.063
  37. Aadil K. R. Green synthesis of silver nanoparticles using acacia lignin, their cytotoxicity, catalytic, metal ion sensing capability and antibacterial activity / K. R. Aadil, N. Pandey, S. I. Mussatto, H. Jha // Journal of Environmental Chemical Engineering. – 2019. – V. 7 (5). – 103296. URL: https://doi.org/10.1016/j.jece.2019.103296
  38. Lizundia E. Synergic effect of nanolignin and metal oxide nanoparticles into poly(l-lactide) bionanocomposites: material properties, antioxidant activity, and antibacterial performance / E. Lizundia, I. Armentano, F. Luzi, F. Bertoglio, E. Restivo, L. Visai, L. Torre // Applied Bio Materials. – 2020. – V. 3 (8). – R. 5263–5274. URL: https://doi.org/10.1021/acsabm.0c00637
  39. Figueiredo P. Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications / P. Figueiredo, K. Lintinen, J.T. Hirvonen, M.A. Kostiainen, H.A. Santosa // Progress in Materials Science. – 2018. – V. 93. – P. 233-269. URL: https://doi.org/10.1016/j.pmatsci.2017.12.001
  40. Polishchuk S.O. Fizyko-khimichne obhruntuvannia tekhnolohii koloruvannia tekstylnykh materialiv novymy vypusknymy formamy orhanichnykh barvnykiv : avtoref. dys. na zdobuttia nauk. stupenia dok. tekh. nauk : spets. 05.19.03 «Tekhnolohiia tekstylnykh materialiv» / Stepan Oleksandrovych Polishchuk; Khersonskyi derzhavnyi tekhnichnyi universytet. – Kherson, 1999. – 35 s.
  41. Mellinas S. Recent Trends in the Use of Pectin from Agro-Waste Residues as a Natural-Based Biopolymer for Food Packaging Applications / C. Mellinas, M. Ramos, A. Jiménez, M. C. Garrigós // Materials. – 2020. – V. 13 (3). – 673. URL: https://doi.org/10.3390/ma13030673
  42. Kuma, M. Emerging trends in pectin extraction and its anti-microbial functionalization using natural bioactives for application in food packaging / M. Kumar, M. Tomar, V. Saurabh, T. Mahajan, S. Punia, M. D. M. Contreras, S. G. Rudra, C. Kaur, J. F. Kennedy // Trends in Food Science & Technology. – 2020. – V. 105. – 223-237. URL: https://doi.org/10.1016/j.tifs.2020.09.009
  43. Mather J. P. Introduction to cell and tissue culture / J. P. Mather, P. E. Roberts // Theory and technique. – New York : Plenum Press, 1998. – R. 175–194.
  44. Vyznachennia chutlyvosti mikroorhanizmiv do antybakterialnykh preparativ [Elektronnyi resurs] : metodychni vkazivky : MOZ Ukrainy, Nakaz 05.04.2007 № 167. Rezhym dostupu: https://zakon.rada.gov.ua/rada/show/v0167282-07#Text
  45. Freitas F. M. Green synthesis of lignin nano- and microNational-particles: Physicochemical characterization, bioactive properties and cytotoxicity assessment / F.M. Freitas, M.A. Cerqueira, C. Gonçalves, S. Azinheiro, A. Garrido-Maestu, A.A. Vicente, L.M. Pastrana, J.A. Teixeira, M. Michelin // National library of Medicine. – 2020. – V. 15(163). – P. 1798-1809. URL: 10.1016/j.ijbiomac.2020.09.110.
  46. Tao J. Lignin–An underutilized, renewable and valuable material for food industry / J. Tao, S. Li, F. Ye, Y. Zhou, L. Lei, G. Zhao // Food Science and Nutrition. – 2020. – V. 60 (12). – R. 2011-2033. URL: https://doi.org/10.1080/10408398.2019.1625025
  47. Gerasko E. V. Biocidnye svojstva nanorazmernyh chastic serebra / E. V. Gerasko, S. A. Chulovskaya, V. I. Parfenyuk // Vestnik KGU im. N.A. Nekrasova. – 2011. – № 3. – S. 22-25.
  48. Antonovskaya L. I. Vybor metodov, uslovij ispytanij i parametrov ocenki antibakterialnyh svojstv biocidnyh preparatov / L. I. Antonovskaya, N. A. Belyasova // Himiya, tehnologiya organicheskih veshestv i biotehnologiya. Trudy BGTU. – 2011. – № 4. – S. 178-181.

 

Post Author: npetliaks

Translate