Надіслати статтю
вул. Інститутська 11, м. Хмельницький, 29016

УДОСКОНАЛЕННЯ ТЕХНОЛОГІЇ ВИГОТОВЛЕННЯ ХУТРОВОГО ВЕЛЮРУ ЗА ДОПОМОГОЮ ЕЛЕКТРОХІМІЧНО АКТИВОВАНОЇ ВОДИ

IMPROVEMENT OF TECHNOLOGY OF MANUFACTURE OF FUR VELOUR WITH THE HELP OF ELECTROCHEMICALLY ACTIVATED WATER

Сторінки: 215-221. Номер: №3, 2020 (285)
Автори:
А. Г. ДАНИЛКОВИЧ, О. О. РОМАНЮК
Київський національний університет технологій та дизайну
А. DANYLKOVYCH, O. ROMANIUK
Kyiv National University of Technologies and Design
DOI: https://www.doi.org/10.31891/2307-5732-2020-285-3-33
Рецензія/Peer review : 22.04.2020 р.
Надрукована/Printed : 02.06.2020 р.

Анотація мовою оригіналу

У роботі запропонована інноваційна технологія виготовлення хутрового велюру з овчин прісно-сухого консервування. Розроблена технологія передбачає використання електрохімічно активованої води в технологічних процесах регенерації водного балансу сировини, знежирювання, пікелювання-дублення та додублювання сполуками хрому. Запропонована технологія забезпечує інтенсифікацію відмочування сировини і більш ефективне зв’язування хромового дубителя з колагеном шкірної тканини овчин. Отриманий хутровий велюр характеризується підвищеними показниками термостійкості та фізико-механічних властивостей.
Ключові слова: овчина прісно-сухого консервування, електрохімічно активована вода, технологія, хутровий велюр, фізико-хімічні властивості.

Розширена анотація англійською мовою

The paper proposes an innovative technology for the production of fur velour from fresh-dry canned sheepskin. The developed technology involves the use of electrochemically activated water in the technological processes of soaking-degreasing, pickling-tanning and tanning with chromium compounds. The experimental halves of fresh-dry canned sheep were soaked in a mixture of catholyte / anolyte at a volume ratio of 5: 1 with an initial pH of 8,2 at LR  7 and a temperature of 25 °C for 6 hours. The second soaking at pH 8,2 and two-stage degreasing of sheepskins was carried out at pH 9,5–9,7 (catholyte medium) with the addition of nonionic surfactant (NS), respectively, 50% and 33% of the current technology. Subsequent tanning of the semi-finished product was performed on the spent anolyte, to which one hour before the completion of the pickling process was added lactic acid. The proposed technology in comparison with the current allows to perform the soaking process at a lower 5 °C ambient temperature, reduce the cost of chromium tanning agent in 2 times, alum-potassium alum in 2,3 times, NS in 3 times, to exclude from technological solutions environmentally harmful formalin and sodium carbonate, reduce the duration of soaking, tanning and tanning processes by 2,4-2,7 times. The use of the developed technology provides effective binding of chromium tanning agent with collagen of sheepskin skin, which increases the environmental friendliness of wastewater. The content of chromium tanning agent in the skin fabric of sheepskin, the content of unbound fatty substances in the skin tissue and hair does not exceed the relevant values provided by the standard. Fur velour obtained from sheepskin is characterized by heat resistance of 92 °С and physical and mechanical parameters increased by 13–16%.
Keywords: sheepskin of the fresh-dry canned, electrochemically activated water, technology, fur velour, physical and chemical properties.

References

  1. A New Defect on Leather: Microbial Bio-Film / B. H. Cadirci, H. Ozgunay, C. Vural, O. Yilmaz // J. Am. Leather Chem. Assoc. – 2010. – V. 105. – R. 129–134.
  2. Teoreticheskie osnovy elektrohimicheskoj obrabotki vodnyh rastvorov / G. A. Plutahin, Aider Mohammed, A. G. Koshaev, E. N. Gnatko // Nauchnyj zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta. – 2013. – № 92 (08). – S. 1–25.
  3. Shirahata S. Advanced research on the health benefit of reduced water / S. Shirahata, T. Hamasaki, K. Teruya // Trends Food Sci. Technol. – 2012. – V. 23,  February, No. 2. – P. 124–131.
  4. Thorn R. M. S. Electrochemically Activated Solutions: Evidence for Antimicrobial Efficacy and Applications in Healthcare Environments / R. M. S. Thorn, S. W. H. Lee, G. M. Robinson, J. Greenman, D.M. Reynolds // Eur. J. Clin. Microbiol. – 2012. – V. 31. – R. 641–653.
  5. Swan J. S. Elimination of Biofilm and Microbial Contamination Reservoirs in Hospital Washbasin U-Bends by Automated Cleaning and Disinfection with Electrochemically Activated Solutions / J. S. Swan, E. C. Deasy, M.A. Boyle, R. J. Russell, M. J. ODonnell, D. C. Coleman // J. Hosp. Infect. – 2016. – V.  94. – No 2. – P. 169–174.
  6. Akbulut M. B. In Vitro Antimicrobial Activity of Different Electrochemicallyactivated Solutions on Enterococcus Faecalis / M. B. Akbulut, A. Unverdi Eldeniz // Eur. Oral Res. – 2019. – V. 53. – No 1. – P. 44–50.
  7. Pogorelov A. G. Disintegration of Bacterial Film by Electrochemically Activated Water Solution / A. G. Pogorelov, O. A. Suvorov, A. L. Kuznetsov, A. I. Panait, M. A. Pogorelova, L. G. Ipatova // Bull. Exp. Biol. Med. – 2018. – V. 165. – No 4. – P. 493–496.
  8. Wilsmann D. E. Electrochemically-Activated Water Presents Bactericidal Effect against Salmonella Heidelberg Isolated from Poultry Origin / D. E. Wilsmann, D. Carvalho, G. Z. Chitolina, K. A. Borges, T. Q. Furian, A. C. Martins, B. Webber, do V. P. Nascimento // Foodborne Pathog. Dis. – 2019. – P. 1–6.
  9. Pogorelova M. A. Does Electrochemically Reduced Water Remove Bacterial Film? / M. A. Pogorelova, A.L. Kuznetsov, O. A. Suvorov // Int. J. Pharm. Res. Allied Sci. – 2018. – V. 7. – No 2. – P. 139–142.
  10. Role of Electrochemically Activated Solution in Asepsis in Osteoblasts and Chondrocytes in Vitro / N.S.D. Michel, J. R. J. Paletta, M. Kerwart, A. Skwara // J. Investig. Surg. – 2016. – V. 29. – No 3. – R. 157–166.
  11. Suppressive Effects of Electrochemically Reduced Water on Matrix Metalloproteinase-2 Activities and in Vitro Invasion of Human Fibrosarcoma HT1080 Cells. In Regeneration of raw hide water balance by electrochemically activated water Cytotechnology / T. Kinjo, J. Ye, H. Yan, T. Hamasaki, H. Nakanishi, K. Toh, N. Nakamichi, S. Kabayama, K. Teruya, S. Shirahata // Springer Netherlands. – 2012. – V. 64. – P. 357–371.
  12. Electrochemically Activated Water as an Alternative to Chlorine for Decentralized Disinfection / K. Ghebremichael, E. Muchelemba, B. Petrusevski, G. Amy // J. Water Supply Res. Technology-Aqua. – 2011. – V. 60. –  No 4. – P. 210–218.
  13. The antimicrobial activity of neutral electrolyzed water against germs and fungi from feedstuffs, eggshells and laying hen house / I. Surdu, D. Vătuiu, Ş. Jurcoane, M. Olteanu, and I. Vătuiu // Romanian Biotechnological Letters. – 2018. – Vol. 23, No. 3. – R. 13607–13614. – URL : https://www.e-repository.org/rbl/vol.23/iss.3/7.pdf.
  14. Thorn R. M. S. Assessing the Antimicrobial Potential of Aerosolised Electrochemically Activated Solutions (ECAS) for Reducing the Microbial Bio-Burden on Fresh Food Produce Held under Cooled or Cold Storage Conditions / R. M. S. Thorn, J. Pendred, D. M. Reynolds // Food Microbiol. – 2017. – V. 68. – P. 41–50.
  15. Robinson, G. The Effect of Long-Term Storage on the Physiochemical and Bactericidal Properties of Electrochemically Activated Solutions / G. Robinson, R. Thorn, D. Reynolds // Int. J. Mol. Sci. – 2013. – V. 14. – No 1. – P. 457–445.
  16. Cronje N. Catholyte as an Environmentally Friendly Detergent: Effect on the Colourfastness of Black Dyed Textiles / N. Cronje, H. J. H. Steyn, R. Schall // J. Text. Inst. – 2019. – URL :  https://doi.org/10.1080/00405000.2019.1703489.
  17. Lutsyk R. V. Mozhlyvosti vykorystannia elektroaktyvovanoi vody v tekhnolohichnykh protsesakh vzuttievoho vyrobnytstva / R. V. Lutsyk, O. A. Matviienko, O. V. Bovsunovskyi // Visnyk KNUTD. – 2005. – № 2. – S. 5358.
  18. Zorina E. F. Vliyanie prirody dubitelej i vody na plasticheskie svojstva kozhevoj tkani meha i kozhi / E. F. Zorina, G. M. Zeleva, Z. E. Nagornaya // Omskij nauchnyj vestnik. – 2002. – № 19. – S. 140–141.
  19. Danylkovych A. G. Use of electrochemically activated aqueous solutions in the manufacture of fur materials / A. G. Danylkovych, V. I. Lishchuk, O. O. Romaniuk // Springerplus. – 2016. – Vol. 5, December, No. 1. –  P. 1–11. –  DOI : 10.1186/s40064-016-1784-6.
  20. Ovchyny nevychyneni. Tekhnichni umovy : DSTU 8359:2015. – Chynnyi vid 2017-07-01. – K. : Derzhspozhyvstandart Ukrainy, 2015. – (Natsionalni standarty Ukrainy).
  21. Danilkovich A. G. Analiticheskij kontrol v proizvodstve kozhi i meha / A. G. Danilkovich, V. I.  Chursin. – Moskva : Nauchno-izdat. centr «INFRA-M», 2015. – 176 s.
  22. Bordun I. M. Vplyv umov zberihannia na protsesy relaksatsii u elektrokhimichno aktyvovanii vodi / I. M. Bordun, V. V. Ptashnyk // Vstochno-Evropeiskyi zhurnal peredovykh tekhnolohii. – 2012. – № 1/6(55). – S. 27–30.
  23. Danylkovych A. H. Tekhnolohiia i materialy vyrobnytstva shkiry / Danylkovych A. H., Mokrousova O. R., Okhmat O. A. ; pid red. A. H. Danylkovycha. – Kyiv : Feniks, 2009. – 580 s.
  24. Tekhnolohiia obrobky khutrovoho veliuru. V kn. : Suchasne vyrobnytstvo khutra / [za red. A.H. Danylkovycha]. – Kyiv : Feniks, 2015. – S. 151–162.
  25. Velyur mehovoj. Tehnicheskie usloviya : TU 17-20-38-89. – Dejstvuyushij ot 1989-10-04. – Harkov : Harkovskij centr standartizacii i metrologii, 1989. – 6 s.
  26. Ovchina mehovaya vydelannaya. Tehnicheskie usloviya [Elektronnyj resurs] : GOST 4661-76. – Dejstvuyushij ot 1977-01-01. Moskva : IPK izdatelstvo standartov, 2002. – 11 s. – (Mezhgosudarstvennyj standart). – Rezhim dostupa : http://vsegost.com/Catalog/15/15890.shtml.

Post Author: npetliaks

Translate