Надіслати статтю
вул. Інститутська 11, м. Хмельницький, 29016

ДИАГНОСТИКА АСИНХРОННОГО ЭЛЕКТРОДВИГАТЕЛЯ ТЕПЛОВИЗОРОМ С ИСПОЛЬЗОВАНИЕМ НЕЙРОННЫХ СЕТЕЙ

DIAGNOSTICS OF AN ASYNCHRONOUS MOTOR THERMAL INSULATOR USING NEURAL NETWORKS

Сторінки: 192-194. Номер: №4, 2019 (275)
Автори:
Д.Ю. ЗУБЕНКО, О.М. ПЕТРЕНКО
Харьковский национальный университет городского хозяйства имени О.Н. Бекетова
D. ZUBENKO, О. PETRENKO
O.M. Beketov National University of Urban Economy in Kharkiv
DOI: https://www.doi.org/10.31891/2307-5732-2019-275-4-192-194
Рецензія/Peer review : 04.06.2019 р.
Надрукована/Printed : 17.07.2019 р.

Анотація мовою оригіналу

Электрические двигатели применяются на самом экологически чистом наземном транспорте – электротранспорте. Однако, используемые электродвигатели выделяют значительное количество тепла из-за больших мощностей, что в свою очередь влияет как на работу самих двигателей, так и отрицательно влияет на окружающую среду путем повышения температуры. В данной статье рассматриваются вопросы диагностики асинхронных электродвигателей с помощью тепловизора и анализа полученной картинки при помощи нейронных сетей. Данная методика позволяет следить за предельно-допустимым излучением тепловой энергии в атмосферу, а также увеличить надежность работы электромеханической системы.
Ключевые слова: тепловой контроль, электродвигатель, тепловизор, диагностика, бесконтактные методы, нечеткая логика, безотказная работа, нейронная сеть.

Розширена анотація англійською мовою

Electric engines are used on the most environmentally friendly land transport – electric transport. However, the used electric motors emit a significant amount of heat due to high power, which in turn affects both the operation of the engines themselves and negatively affects the environment, by increasing the temperature. This article addresses the issues of diagnosing asynchronous electric motors using a thermal imager and analysing the resulting image using neural networks. This method allows you to monitor the maximum permissible radiation of thermal energy into the atmosphere, as well as to increase the reliability of the electromechanical system. Electric transport is one of the environmentally friendly technical means for the transport of passengers. However, the operation of its main electrical components contributes to the release of significant amounts of heat into the atmosphere, which adversely affects the environment and leads to environmental changes on the planet. Failures of electric rotating motors also lead to operation failures and can be listed as: stator faults, rotor electrical faults, mechanical rotor faults. However, the methods for the faults mentioned become complex and specific. In the literature, methods for diagnosing faults have been developed by scientists. Analyses of electrical signals, acoustic signals, vibrations, thermal imaging of electric motors have been very popular in recent literature. Methods for diagnosing electrical faults in electric motors have been developed in the literature. MCSA (Motor Current Signature Analysis) is a fault diagnosis technology. In the literature, MCSA was used to detect specific malfunctions of electrical and mechanical asynchronous motors. MCSA has many advantages, because it is not expensive. Infrared physics and technologies of stator winding diagnostics, not subject to stress or asymmetry. As well as the ease of installation of current sensors. However, this has drawbacks, such as stator current data must be selected after the engine speed reaches a steady state. Vibration alarms were also very popular for troubleshooting. Methods based on vibration analysis have an advantage and are more sensitive than MCSA to certain malfunctions.
Keywords: thermal control, electric motor, thermal imager, diagnostics, contactless methods, fuzzy logic, trouble-free operation, neural network.

References

  1. Henao, G.A. Capolino, M. Fernandez-Cabanas, F. Filippetti, C. Bruzzese, E. Strangas, R. Pusca, J. Estima, M. Riera-Guasp, S. Hedayati-Kia, Trends in fault diagnosis for electrical machines a review of diagnostic techniques, IEEE Ind. Electron. Mag. 8 (2) (2014) 31–42.
  2. G. Garcia-Ramirez, L.A. Morales-Hernandez, R.A. Osornio-Rios, J.P. BenitezRangel, A. Garcia-Perez, R.D. Romero-Troncoso, Fault detection in induction motors and the impact on the kinematic chain through thermographic analysis, Electr. Power Syst. Res. 114 (2014) 1–9, http://dx.doi.org/10.1016/j. epsr.2014.03.031.
  3. Khalaf Salloum Gaeid, Hew Wooi Ping, Mustafa Khalid, Atheer Lauy Salih, Fault diagnosis of induction motor using MCSA and FFT, Electr. Electron. Eng. 1 (2) (2011) 85–92, http://dx.doi.org/10.5923/j.eee.20110102.14.
  4. Ciszewski, L. Gelman, L. Swedrowski, Current-based higher-order spectral covariance as a bearing diagnostic feature for induction motors, Insight 58 (8) (2016) 431–434, http://dx.doi.org/10.1784/insi.2016.58.8.431.
  5. Sulowicz, K. Weinreb, R. Mielnik, T. Zywczak, M. Jaraczewski, The method of current measurement in the rotor cage bars of prototype induction motor with the use of Rogowski coils, in: International Conference on Information and Digital Technologies (IDT), 2015, pp. 357–365.
  6. Michalak, B. Sikora, J. Sobczyk, Diagnostic model for longwall conveyor engines, in: Man-Machine Interactions 4, ICMMI 2015, Book Series: Advances in Intelligent Systems and Computing, 391, 2016, pp. 437–448, http://dx.doi. org/10.1007/978-3-319-23437-3_37.
  7. G. Garcia-Ramirez, L.A. Morales-Hernandez, R.A. Osornio-Rios, A. GarciaPerez, R.J. Romero-Troncoso, Thermographic technique as a complement for MCSA in induction motor fault detection, in: 2014 International Conference on Electrical Machines (ICEM), 2014, pp. 1940–1945.
  8. A. Delgado-Arredondo, A. Garcia-Perez, D. Morinigo-Sotelo, R.A. OsornioRios, J.G. Avina-Cervantes, H. Rostro-Gonzalez, R.D. Romero-Troncoso, Comparative study of time-frequency decomposition techniques for fault detection in induction motors using vibration analysis during startup transient, Shock Vib. (2015), http://dx.doi.org/10.1155/2015/708034 Article Number: 708034.
  9. J. Saucedo-Dorantes, M. Delgado-Prieto, J.A. Ortega-Redondo, R.A. OsornioRios, R.D. Romero-Troncoso, Multiple-fault detection methodology based on vibration and current analysis applied to bearings in induction motors and gearboxes on the kinematic chain, Shock Vib. (2016), http://dx.doi.org/ 10.1155/2016/5467643 Article Number: 5467643.
  10. X. Li, Y. Jiang, C. Hu, Z. Peng, Recent progress on decoupling diagnosis of hybrid failures in gear transmission systems using vibration sensor signal: a review, Measurement 90 (2016) 4–19, http://dx.doi.org/10.1016/j. measurement.2016.04.036.
  11. X. Li, X.P. Yan, X.P. Wang, Z.X. Peng, Detection of gear cracks in a complex gearbox of wind turbines using supervised bounded component analysis of vibration signals collected from multi-channel sensors, J. Sound Vib. 371 (2016) 406–433, http://dx.doi.org/10.1016/j.jsv.2016.02.021.
  12. Glowacz, Z. Glowacz, Diagnosis of stator faults of the single-phase induction motor using acoustic signals, Appl. Acoust. 117 (Part A) (2017) 20–27, http:// dx.doi.org/10.1016/j.apacoust.2016.10.012.
  13. Glowacz, Fault diagnostics of acoustic signals of loaded synchronous motor using SMOFS-25-EXPANDED and selected classifiers, Tehnicki Vjesnik – Tech. Gaz. 23 (5) (2016) 1365–1372.
  14. Deptula, P. Osinski, U. Radziwanowska, Decision support system for identifying technical condition of combustion engine, Arch. Acoust. 41 (3) (2016) 449–460.
  15. Deptula, D. Kunderman, P. Osinski, U. Radziwanowska, R. Wlostowski, Acoustic diagnostics applications in the study of technical condition of combustion engine, Arch. Acoust. 41 (2) (2016) 345–350, http://dx.doi.org/ 10.1515/aoa-2016-0036.

Post Author: npetliaks

Translate