Надіслати статтю
вул. Інститутська 11, м. Хмельницький, 29016

ТЕПЛОПЕРЕДАЧА ЗОВНІШНЬОГО ВЕНТИЛЯТОРА ОХОЛОДЖЕННЯ В ЕЛЕКТРОДВИГУНІ ВИСОКОЇ НАПРУГИ

HEAT TRANSMITTER OF EXTERIOR COOLING FAN IN HIGH VOLTAGE ELECTRIC MOTOR VEHICLE

Сторінки: 243-247. Номер: №5, 2019 (277)
Автори:
Д.Ю. ЗУБЕНКО, О.Н. ПЕТРЕНКО, В.О. ОРЛОВ
Харківський національний університет міського господарства імені О.М. Бекетова
D. ZUBENKO, О. PETRENKO, V. ORLOV
O.M. Beketov National University of Urban Economy in Kharkiv
DOI: https://www.doi.org/10.31891/2307-5732-2019-277-5-243-247
Рецензія/Peer review : 07.06.2019 р.
Надрукована/Printed : 23.07.2019 р.

Анотація мовою оригіналу

У даній роботі досліджуються характеристики теплообміну зовнішнього вентильованого тракту компактного 4-полюсного електродвигуна, який може бути використаний у транспорті. Обчислювальна модель створена і підтверджена результатами експериментальних випробувань. Серія симуляцій виконується на нейронних мережах.  Встановлено, що кут відхилення і кут нахилу лопастей вентилятора є ключовими параметрами, що впливають на ефективність охолодження електродвигуна. Оптимальні заходи вживаються шляхом зміни кута відхилення і кута випуску лопастей вентилятора.
Ключові слова: електричний транспорт, електродвигун, підвищення потужності, охолодження електродвигуна, нейронні мережі.

Розширена анотація англійською мовою

This paper investigates the heat exchange characteristics of an external ventilated tract of a compact 4-pole electric motor that can be used in transportation. The computational model was created and validated by experimental results. A series of simulations run on neural networks. It is found that the deflection angle and the angle of the fan blades are key parameters that affect the cooling efficiency of the motor. Optimal measures are taken by varying the deflection angle and the exhaust fan blade angle. With the development of technology, the design of electric motors with high efficiency and high specific power is increasingly used in transport. The compact high voltage motor has the advantages of: compact structure, high power density and high electromagnetic component. However, increasing the power density will inevitably lead to more serious consequences, namely the problem of overheating, which will reduce engine power and efficiency. As a solution controlling the range, increasing temperature, which is a key factor, affects the performance and efficiency of the overall design. Therefore, it is necessary to analyse the flow field and the exact temperature field and improve the cooling system, which gives the ability to ensure reliable operation of the engine and its ventilation. Currently, many researchers focus their research interests on heat transfer and engine cooling. The article deals with the issue of heat transfer of an external cooling fan in a high voltage electric motor and the processing of the obtained information by means of neural networks. Studies have shown that the velocity at the outlet and the temperature of the internally ventilated varies depending on the load and can be predicted by neural networks. The accuracy of the simulation and simulation method is proved by calculations. The results of the study can provide an effective tool for the design of induction motors with high specific power.
Keywords: electric transport, electric motor, increase of power, cooling of electric motor, neural networks.

References

  1. Naskar A.K., Sarkar D. Numerical analysis of three dimensional steady state heat conduction in the rotor of an induction motor by finite element method. International Conference on Control, Instrumentation, Energy and Communication, 2014.
  2. Dingetal S. Numerical research of wind friction loss for double fed hydro turbine generator, J. Huazhong Univ. Sci. Technol. (2014).
  3. Changetal C.C. Air cooling for a large-scale motor, Appl. Therm. Eng. 30 (11– 12) (2010) 1360–1368.
  4. Li H. Cooling of a permanent magnet electric motor with a centrifugal impeller, Int. J. Heat Mass Transf. 53 (4) (2010) 797–810.
  5. Li H. Flow driven by a stamped metal cooling fan – numerical model and validation, Exp. Therm Fluid Sci. 33 (4) (2009) 683–694.
  6. Stafford J., Walsh E., Egan V. Local heat transfer performance and exit flow characteristics of a miniature axial fan, Int. J. Heat Fluid Flow 31 (5) (2010) 952–960.
  7. Ding S., Liu J., Zhang L. Fan characteristics of the self-support components of rotor end sand its performance matching, Int. J. Heat Mass Transf. 108 (2017) 1917–1923.
  8. Xie Y., Wang Y. 3D temperature field analysis of the induction motors with broken bar fault, Appl. Therm. Eng. 66 (1–2) (2014) 25–34.
  9. Herbert W.A. Totally enclosed fan-cooled squirrel-cage induction motor options, IEEE Trans. Ind. Appl. 50 (2) (2014) 1590–1598.
  10. Ahmed F., Ghosh E., Kar N.C. Transient thermal analysis of a copper rotor induction motor using a lumped parameter temperature network model, in: IEEE Transportation Electrification Conference and Expo, 2016.
  11. Zhangetal Y. Calculation of temperature rise in air-cooled induction motors through 3-D coupled electromagnetic fluid-dynamical and thermal finite element analysis, Magnet. IEEE Trans. 48 (2) (2012) 1047–1050.
  12. Kolondzovski Z., Belahcen A., Arkkio A. Multi physics thermal design of a high speed permanent-magnet machine, Appl. Therm. Eng. 29 (13) (2009) 2693– 2700.
  13. Kim C., Lee K.S., Kim C., et al. Numerical investigation of the air-gap flow heating phenomena in large-capacity induction motors, Int. J. Heat Mass Transf. 110 (2017) 746–752.
  14. Nateghetal S. Thermal modelling of directly cooled electric machines using lumped parameter and limited CFD analysis, IEEE Trans. Energy Convers. 28 (4) (2013) 979–990.
  15. Zubenko D.Iu. Doslidzhennia metodiv upravlinnia proektamy remontu transportnykh zasobiv / D.Iu. Zubenko // Vostochno-Evropeiskyi zhurnal peredovykh tekhnolohyi. – 6 (3). – S. 15–18.

 

Post Author: npetliaks

Translate