Надіслати статтю
вул. Інститутська 11, м. Хмельницький, 29016

КІБЕРФІЗИЧНІ БІОСЕНСОРНІ ТА ІМУНОСЕНСОРНІ СИСТЕМИ

CYBERPHYSIC BIOSENSORS AND IMMUNOSENSORS SYSTEMS

Сторінки: 145-154. Номер: №1, 2019 (269)
Автори:
А.С. СВЕРСТЮК
ДВНЗ «Тернопільський державний медичний університет імені І. Я. Горбачевського МОЗ України»
A.S. Sverstiuk
SHEI “I. Ya. Gorbachevsky Ternopil State Medical University of MH of Ukraine”
DOI: https://www.doi.org/10.31891/2307-5732-2019-269-1-145-154
Рецензія/Peer review : 27.01.2019 р.
Надрукована/Printed : 16.02.2019 р.

Анотація мовою оригіналу

Розглянуто основні підходи, які лежать в основі розробки кіберфізичних біосенсорних та імуносенсорних систем. Проведена класифікація розроблюваних систем на основі чутливих елементів та з використанням різних режимів фізико-хімічного перетворення вимірювальної величини. Наведено технічні стратегії, що застосовуються для розробки біосенсорних та імуносенсорних систем, які засновані на виявленні біомаркерів з використанням і без використання міток. Узагальнено біосенсорні та імуносенсорні системи відносно принципів їх роботи та областей застосування. Розглянуто підхід до розробки кіберфізичних біосенсорних та імуносенсорних систем з використанням дискретної популяційної динаміки, яку поєднано з динамічною логікою, що використовується для дискретних подій.
Ключові слова: кіберфізична система, біосенсорна система, імуносенсорна система, види фізико-хімічного перетворення вимірювальної величини.

Розширена анотація англійською мовою

The main approaches underlying the development of cyberphysical biosensory and immunosensory systems are considered. The classification of developed systems based on sensitive elements and using different modes of physic-chemical transformation of the measuring quantity is carried out. The basic technical characteristics of cyberphysical biosensory and immunosensory systems are considered. The technical strategies used to develop biosensor and immunosensory systems based on the identification of biomarkers with and without the use of labels are presented. The paper deals with electrochemical, optical, silicon oxide based on nanomaterials, genetically encoded and cellular, cyberphysical biosensory and immunosensory systems developed using synthetic biology and genetic engineering. The biosensor and immunosensory systems are generalized, in relation to the principles of their work and areas of application. An approach to the development of cyberphysical biosensory and immunosensory systems using discrete population dynamics is considered, which is combined with the dynamic logic used for discrete events. A class of latency lattice differential equations that simulates the interaction of antigens and antibodies in immunopixels is used. The spatial operator simulates the interaction of the type of diffusion between the immunopips. The result of numerical simulation of the electronics signal from the converter of the cyberphysical immunosensory system, which characterizes the number of fluorescing pixels, is presented. The considered immunosensors are presented as a two-dimensional array of immunopicles. To take into account the continuous dynamics of the immunological response, each immunopixel is considered as a cyberphysical immunosensory system. The result of numerical modelling of the cyberphysical immunosensory system, in which there is a chaotic wave of fluorescing pixels, is presented.
Key words: cyberphysical system, biosensor system, immunosensory system, types of physic-chemical transformation of the measuring quantity.

References

  1. Mehrotra “Biosensors and their applications – a review,” Journal of Oral Biology and Craniofacial Research, vol. 6, no. 2, pp. 153–159, May 2016.
  2. Jiang, M. G. Spencer “Electrochemical impedance biosensor with electrode pixels for precise counting of CD4+ cells: A microchip for quantitative diagnosis of HIV infec- tion status of AIDS patients,” Biosensors and Bioelectronics, vol. 25, no. 7, pp. 1622–1628, Mar. 2010.
  3. B. Luppa, L. J. Sokoll, D. W. Chan “Immunosensors principles and applications to clinical chemistry,” Clinica Chimica Acta, vol. 314, no. 1, pp. 1–26, 2001.
  4. A. Lee “Cyber physical systems: Design challenges,” Center for Hybrid and Embedded Software Systems, EECS University of California, Berkeley, CA 94720, USA, Tech. Rep. UCB/EECS-2008-8, Jan. 2008. Available at: https://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/ EECS-2008-8.pdf.
  5. Lee, B. Bagheri, H.-A. Kao “A cyber-physical systems architecture for industry 4.0-based manufacturing systems,” Manufacturing Letters, vol. 3, pp. 18–23, 2015, ISSN: 2213- 8463. Available at: http://www.sciencedirect.com/science/ article/pii/S221384631400025X.
  6. Berger, A. Hees, S. Braunreuther, and G. Reinhart “Characterization of cyber-physical sensor systems,” Procedia CIRP, vol. 41, pp. 638–643, 2016. Available at: https://doi.org/10.1016/j.procir. 2015.12.019.
  7. Martsenyuk V.P., Klos-Witkowska A., Sverstiuk A.S. Study of classification of immunosensors from viewpoint of medical tasks // Medical informatics and engineering. – 2018.-№ 1(41). – p.13-19.
  8. Bihuniak T.V., Sverstiuk A.S., Bihuniak K.O. Deiaki aspekty vykorystannia imunosensoriv u medytsyni // Medychnyi forum. – 2018. – no. 14 (14). – pp. 8-11.
  9. Martsenyuk V.P., Klos-Witkowska A., Sverstiuk A.S., Bihunyak T.V. On principles, methods and areas of medical and biological application of optical immunosensors // Medical informatics and engineering. – 2018. – № 2 (42). – p.28-36.
  10. J. Cruz, C.C. Rosa, A.G. Oliva “Immunosensors for diagnostic applications,” Parasitology research, vol. 88, S4–S7, 2002.
  11. A. Byely`x, M.F. Kleshhev Navchal`ny`j posibny`k „Biologichni ta ximichni sensorni sy`stemy`” Xarkiv NTU «XPI», 2011. – 143s.
  12. Turner, A. P. (2013). Biosensors: sense and sensibility. Chem. Soc. Rev. 42, 3184–3196. doi:10.1039/c3cs35528d.
  13. Citartan, M., Gopinath, S. C., Tominaga, J., and Tang, T. H. (2013). Label-free methods of reporting biomolecular interactions by optical biosensors. Analyst 138, 3576–3592. doi:10.1039/c3an36828a.
  14. Sang, S., Wang, Y., Feng, Q., Wei, Y., Ji, J., and Zhang, W. (2015). Progress of new label-free techniques for biosensors: a review. Crit. Rev. Biotechnol. 15, 1–17. d oi:10.3109/07388551.2014.991270.
  15. Vigneshvar S., Sudhakumari C. C., Senthilkumaran Balasubramanian, Prakash Hridayesh Recent Advances in Biosensor Technology for Potential Applications – An Overview Frontiers in Bioengineering and Biotechnology Volume 4. 2016 P. 11. ISSN=2296-4185 DOI=10.3389/fbioe.2016.00011.
  16. Clark, L. C. Jr., and Lyons, C. (1962). Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 102, 29–45. doi:10.111 1/j.1749-6632.1962.tb13623.x
  17. Harris, J. M., Reyes, C., and Lopez, G. P. (2013). Common causes of glucose oxidase instability in in vivo biosensing: a brief review. J. Diabetes Sci. Technol. 7, 1030–1038.
  18. Wang, B., Takahashi, S., Du, X., and Anzai, J. (2014). Electrochemical biosensors based on ferroceneboronic acid and its derivatives: a review. Biosensors (Basel) 4, 243–256. doi:10.3390/bios4030243.
  19. Gruhl, F. J., Rapp, B. E., and Lange, K. (2013). Biosensors for diagnostic applications. Adv. Biochem. Eng. Biotechnol. 133, 115–148. doi:10.1007/10_2011_130.
  20. Mello, L. D., Kisner, A., Goulart, M. O., and Kubota, L. T. (2013). Biosensors for antioxidant evaluation in biological systems. Comb. Chem. High Throughput Screen. 16, 109–120. doi:10.2174/138620713804806265.
  21. Ogi, H. (2013). Wireless-electrodeless quartz-crystal-microbalance biosensors for studying interactions among biomolecules: a review. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 89, 401–417. doi:10.2183/pjab.89.401.
  22. Peng, F., Su, Y., Zhong, Y., Fan, C., Lee, S. T., and He, Y. (2014). Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy. Acc. Chem. Res. 47, 612–623. doi:10.1021/ar400221g.
  23. Shen, M. Y., Li, B. R., and Li, Y. K. (2014). Silicon nanowire field-effect-transistor based biosensors: from sensitive to ultra-sensitive. Biosens. Bioelectron. 60, 101–111. doi:10.1016/j.bios.2014.03.057.
  24. Schneider, E., and Clark, D. S. (2013). Cytochrome P450 (CYP) enzymes and the development of CYP biosensors. Biosens. Bioelectron. 39, 1–13. doi:10.1016/j. bios.2012.05.043.
  25. Dias, A. D., Kingsley, D. M., and Corr, D. T. (2014). Recent advances in bioprinting and applications for biosensing. Biosensors (Basel) 4, 111–136. doi:10.3390/ bios4020111.
  26. Khimji, I., Kelly, E. Y., Helwa, Y., Hoang, M., and Liu, J. (2013). Visual optical biosensors based on DNA-functionalized polyacrylamide hydrogels. Methods 64, 292–298. doi:10.1016/j.ymeth.2013.08.021.
  27. Kwon, S. J., and Bard, A. J. (2012). DNA analysis by application of Pt nanoparticle electrochemical amplification with single label response. J. Am. Chem. Soc. 134, 10777–10779. doi:10.1021/ja304074f.
  28. Li, M., Li, R., Li, C. M., and Wu, N. (2011). Electrochemical and optical biosensors based on nanomaterials and nanostructures: a review. Front. Biosci. (Schol Ed) 3:1308–1331. doi:10.2741/228.
  29. Zhou, Y., Chiu, C. W., and Liang, H. (2012). Interfacial structures and properties of organic materials for biosensors: an overview. Sensors (Basel) 12, 15036–15062. doi:10.3390/s121115036.
  30. Ko, P. J., Ishikawa, R., Sohn, H., and Sandhu, A. (2013). Porous silicon platform for optical detection of functionalized magnetic particles biosensing. J. Nanosci. Nanotechnol. 13, 2451–2460. doi:10.1166/jnn.2013.7406.
  31. Senveli, S. U., and Tigli, O. (2013). Biosensors in the small scale: methods and technology trends. IET Nanobiotechnol. 7, 7–21. doi:10.1049/ iet-nbt.2012.0005.
  32. Valentini, F., Galache, F. L., Tamburri, E., and Palleschi, G. (2013). Single walled carbon nanotubes/polypyrrole-GOx composite films to modify gold microelectrodes for glucose biosensors: study of the extended linearity. Biosens. Bioelectron. 43, 75–78. doi:10.1016/j.bios.2012.11.019.
  33. Lamprecht, C., Hinterdorfer, P., and Ebner, A. (2014). Applications of biosensing atomic force microscopy in monitoring drug and nanoparticle delivery. Expert. Opin. Drug Deliv. 11, 1237–1253. doi:10.1517/17425247.2014.917078.
  34. Hutter, E., and Maysinger, D. (2013). Gold-nanoparticle-based biosensors for detection of enzyme activity. Trends Pharmacol. Sci. 34, 497–507. doi:10.1016/j. tips.2013.07.002
  35. Su, L., Jia, W., Hou, C., and Lei, Y. (2011). Microbial biosensors: a review. Biosens. Bioelectron. 26, 1788–1799. doi:10.1016/j.bios.2010.09.005.
  36. Ding, L., Bond, A. M., Zhai, J., and Zhang, J. (2013). Utilization of nanoparticle labels for signal amplification in ultrasensitive electrochemical affinity biosensors: a review. Anal. Chim. Acta 797, 1–12. doi:10.1016/j.aca.2013.07.035.
  37. Nie, S., Xing, Y., Kim, G. J., and Simons, J. W. (2007). Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng. 9, 257–288. doi:10.1146/annurev. bioeng.9.060906.152025.
  38. Jain, R. K. (2013). Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J. Clin. Oncol. 31, 2205–2218. doi:10.1200/ JCO.2012.46.3653.
  39. Kunzelmann, S., Solscheid, C., and Webb, M. R. (2014). Fluorescent biosensors: design and application to motor proteins. EXS 105, 25–47. doi:10.1007/978-3-0348-0856-9_2.
  40. Oldach, L., and Zhang, J. (2014). Genetically encoded fluorescent biosensors for live-cell visualization of protein phosphorylation. Chem. Biol. 21, 186–197. doi:10.1016/j.chembiol.2013.12.012.
  41. Randriamampita, C., and Lellouch, A. C. (2014). Imaging early signaling events in T lymphocytes with fluorescent biosensors. Biotechnol. J. 9, 203–212. doi:10.1002/biot.201300195.
  42. De, M. R., Carimi, F., and Frommer, W. B. (2014). Mitochondrial biosensors. Int. J. Biochem. Cell Biol. 48, 39–44. doi:10.1016/j.biocel.2013.12.014.
  43. Su, T., Zhang, Z., and Luo, Q. (2012). Ratiometric fluorescence imaging of dual bio-molecular events in single living cells using a new FRET pair mVenus/ mKOkappa-based biosensor and a single fluorescent protein biosensor. Biosens. Bioelectron. 31, 292–298. doi:10.1016/j.bios.2011.10.034.
  44. Johnson, B. N., and Mutharasan, R. (2014). Biosensor-based microRNA detection: techniques, design, performance, and challenges. Analyst 139, 1576–1588. doi:10.1039/c3an01677c.
  45. Park, K., Jung, J., Son, J., Kim, S. H., and Chung, B. H. (2013). Anchoring foreign substances on live cell surfaces using Sortase A specific binding peptide. Chem. Commun. (Camb) 49, 9585–9587. doi:10.1039/c3cc44753g.
  46. Du, Z., Li, H., and Gu, T. (2007). A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol. Adv. 25, 464–482. doi:10.1016/j.biotechadv.2007.05.004.
  47. Sun, J. Z., Peter, K. G., Si, R. W., Zhai, D. D., Liao, Z. H., Sun, D. Z., et al. (2015). Microbial fuel cell-based biosensors for environmental monitoring: a review. Water Sci. Technol. 71, 801–809. doi:10.2166/wst.2015.035.
  48. Gutierrez, J. C., Amaro, F., and Martin-Gonzalez, A. (2015). Heavy metal wholecell biosensors using eukaryotic microorganisms: an updated critical review. Front. Microbiol. 6:48. doi:10.3389/fmicb.2015.00048.
  49. Scheller, F. W., Yarman, A., Bachmann, T., Hirsch, T., Kubick, S., Renneberg, R., et al. (2014). Future of biosensors: a personal view. Adv. Biochem. Eng. Biotechnol. 140, 1–28. doi:10.1007/10_2013_251.
  50. Wang, S., Poon, G. M., and Wilson, W. D. (2015). Quantitative investigation of protein-nucleic acid interactions by biosensor surface plasmon resonance. Methods Mol. Biol. 1334, 313–332. doi:10.1007/978-1-4939-2877-4_20.
  51. Zhang, Z., Liu, J., Qi, Z. M., and Lu, D. F. (2015). In situ study of self-assembled nanocomposite films by spectral SPR sensor. Mater. Sci. Eng. C Mater. Biol. Appl. 51, 242–247. doi:10.1016/j.msec.2015.02.026.
  52. Arlett, J. L., Myers, E. B., and Roukes, M. L. (2011). Comparative advantages of mechanical biosensors. Nat. Nanotechnol. 6, 203–215. doi:10.1038/ nnano.2011.44.

 

Post Author: npetliaks

Translate