Надіслати статтю
вул. Інститутська 11, м. Хмельницький, 29016

МОДЕЛЮВАННЯ ХАРАКТЕРИСТИК ШИРОКОСМУГОВОЇ АНТЕННОЇ СИСТЕМИ ДЛЯ ПЕЛЕНГАЦІЇ БПЛА

MODELING THE CHARACTERISTICS OF A BROADBAND ANTENNA SYSTEM FOR UAV DIRECTION FINDING

Сторінки: 158167. Номер: №3, 2022 (309)  
Автори:
БОЙКО Ю. М.
Хмельницький національний університет
https://orcid.org/0000-0003-0603-7827
e-mail: boikojulius@ukr.net
ПОЛІКАРОВСЬКИХ О. І.
Одеський національний морський університет
https://orcid.org/0000-0002-1893-7390
e-mail: polalexey@gmail.com
ТКАЧУК В. П.
Хмельницький національний університет
https://orcid.org/0000-0003-0640-2740
e-mail: tkachukv.p@gmail.com
АВДЄЄВ В. М.
ДП «НОВАТОР»
https://orcid.org/0000-0001-8136-4989
e-mail: avdieiev.v.m@gmail.com
СВІСТУНОВ О. С.
ДП «НОВАТОР»
https://orcid.org/0000-0002-8474-1978
e-mail: office@novator-tm.com
Juliy BOIKO, Vitaliy TKACHUK
Khmelnytskyi National University
Oleksiy POLIKAROVSKYKH
Odessa National Maritime University
Victor AVDIEIEV, Oleksiy SVISTUNOV
State Enterprise ”Novator”
DOI: https://www.doi.org/10.31891/2307-5732-2022-309-3-158-167
Анотація мовою оригіналу
В статті проведено аналіз сучасного стану питання проектування широкосмугових антенних систем для розробки пеленгаційних комплексів БПЛА. Здійснено опис прототипу антенної системи на основі елементу антени Вівальді. Встановлено експериментальну залежність між геометричними параметрами і характеристиками антени. Проведено моделювання запропонованої конструкції широкосмугової антенної системи засобами математичного моделювання. Розглянуто методики налаштування запропонованої антенної системи в діапазоні частот за різних умов збудження. Визначено основні тренди у зміні основних параметрів запропонованої антенної системи у широкому діапазоні частот можливої експлуатації.
Ключові слова: БПЛА, антена, пеленгація, діаграма спрямованості, широкосмуговий випромінювач.

Розширена анотація англійською  мовою

The paper presents the results of the development and modelling of a broadband antenna system for Unmanned Aerial Vehicle (UAV) direction finding. The research covered the issues of analytical description of the antenna system based on the prototype – the Vivaldi antennas. The article presents a mathematical description of the Vivaldi antenna element model. An experimental relationship between the geometrical parameters and characteristics of the antenna has been established. A review of the current state of the issue of designing antenna systems based on the concept of building ultra-wideband directional antenna elements in the absence of a phase centre has been carried out. The main trends in the modern design of broadband antenna systems are determined. The main parameters of the proposed broadband antenna are determined by the method of mathematical modelling. The parameters of the proposed antenna in the frequency range under various excitation conditions are studied, and the specifics of the application of such a system under the conditions of its possible use as part of UAV direction-finding complexes are given. The most optimal design option for an ultra-wideband antenna element is a design with an expanding slot (similar to Vivaldi antennas). At present, these antennas are widely used in various devices, namely, in radio reconnaissance devices, medical equipment, etc. Their popularity is due to the presence of advantages over other antennas, among which are a wide operating frequency range, simple design, simple manufacturing requirements, and high gain. In this paper, we considered Tapered Slot Antenna – an antenna with a widening slot. The antenna element designed and modelled in the article is a modified Vivaldi antenna (an antenna with a quasi-slot line with expansion), which is being developed for the direction-finding complex of the UAV. When calculating the TSA of the antenna element, the program for calculating the characteristics of the antennas MMANA was used in order to accelerate the study of the main laws for obtaining the required characteristics. Particular attention was paid to the possibility of changing the radiation pattern (RP) depending on the phase relations of the voltage at the input of the antenna elements.
Keywords: UAV, antenna, direction finding, radiation pattern, broadband antenna emitter.

Література

  1. Shin J. A parameter study of stripline-fed Vivaldi notch-antenna arrays / J. Shin, D. H. Schaubert // IEEE Transactions on Antennas and Propagation. – 1999. – Vol. 47. 5. – P. 879–886.
  2. Stockbroeckx B. Copolar and cross-polar radiation of Vivaldi antenna on dielectric substrate / B. Stockbroeckx, A. Vander Vorst // IEEE Transactions on Antennas and Propagation. – 2000. – Vol. 48. – No. 1. – P. 19–25.
  3. Boiko J. Evaluation of phase-frequency instability when processing complex radar signals / J. Boiko, L. Karpova, O. Eromenko, Y. Havrylko // International Journal of Electrical and Computer Engineering (IJECE). – 2020. – Т. 10. – № 4. – P. 4226–4236.
  4. Rahmat-Samii Y. Array Feeds for Reflector Surface Distortions Compensation: Concept and Implementation / Y. Rahmat-Samii // IEEE Trans. Ant. Prop. – 1990. – Vol. 32. – P. 20–26.
  5. Parhomey I. R. Features of digital signal processing in the information control systems of multipositional radar / I. R. Parhomey, J. M. Boiko, O. I. Eromenko // Journal of Achievements in Materials and Manufacturing Engineering. – 2016. – Vol. 77, no. 2. – P. 75–84.
  6. Appadwedula S. Direction-Finding Results for a Vector Sensor Antenna on a Small UAV / S. Appadwedula, C.M. Keller // Fourth IEEE Workshop on Sensor Array and Multichannel Processing. – 2006. – P. 74–78.
  7. Ghaemi K. A Small-Aperture, Ultrawideband HF/VHF Direction-Finding System For Unmanned Aerial Vehicles / K. Ghaemi, R. Ma, N. Behdad // IEEE Transactions on Antennas and Propagation. – 2018. – Vol. 66(10). – P. 5109–5120.
  8. Parkhomey I. Radar Technique for Aircraft with an Artificially Reduced RCS under Conditions of Application a Resonant Electromagnetic Field / I. Parkhomey, J. Boiko // Вісник Хмельницького національного університету. – 2022. – № 1. – С. 184–190.
  9. Karpova L. Synthesis of ambiguity functions for complex radar signal processing / L. Karpova, J. Boiko, O. Eromenko // 2019 IEEE International Scientific-Practical Conference Problems of Infocommunications, Science and Technology (PIC S&T). – IEEE, 2019. – P. 1–6.
  10. 803E VHF/UHF/SHF COMINT SYSTEM [Electronic resource] / TCI INTERNATIONAL, 2004-2014. – 8 p. – Access mode: http://www.mpssme.ae/WEB/datasheets/tci/TCI803E.pdf (date of appeal: 30.03.2022).
  11. Курушин А.А. Школа проектирования СВЧ устройств в CST STUDIO SUITE / А.А. Курушин. – М. : One-Book, 2014. – 433 с.
  12. Автоматизированное проектирование антенн и устройств СВЧ : учебное-пособие для вузов / [Д. И. Воскресенский, С. Д. Кременецкий, А. Ю. Гринёв, Ю. В. Котов]. – М. : Радио и связь, 1988. – 240 с.
  13. Гурский Д.Н. Вычисления в MATHCAD 12 / Д.Н. Гурский. – СПб : Питер, 2006. – 578 с.

References

  1. Shin J. A parameter study of stripline-fed Vivaldi notch-antenna arrays / J. Shin, D. H. Schaubert // IEEE Transactions on Antennas and Propagation. – 1999. – Vol. 47. 5. – P. 879–886.
  • Stockbroeckx B. Copolar and cross-polar radiation of Vivaldi antenna on dielectric substrate / B. Stockbroeckx, A. Vander Vorst // IEEE Transactions on Antennas and Propagation. – 2000. – Vol. 48. – No. 1. – P. 19–25.
  • Boiko J. Evaluation of phase-frequency instability when processing complex radar signals / J. Boiko, L. Karpova, O. Eromenko, Y. Havrylko // International Journal of Electrical and Computer Engineering (IJECE). – 2020. – Т. 10. – № 4. – P. 4226–4236.
  • Rahmat-Samii Y. Array Feeds for Reflector Surface Distortions Compensation: Concept and Implementation / Y. Rahmat-Samii // IEEE Trans. Ant. Prop. – 1990. – Vol. 32. – P. 20–26.
  • Parhomey I. R. Features of digital signal processing in the information control systems of multipositional radar / I. R. Parhomey, J. M. Boiko, O. I. Eromenko // Journal of Achievements in Materials and Manufacturing Engineering. – 2016. – Vol. 77, no. 2. – P. 75–84.
  • Appadwedula S. Direction-Finding Results for a Vector Sensor Antenna on a Small UAV / S. Appadwedula, C.M. Keller // Fourth IEEE Workshop on Sensor Array and Multichannel Processing. – 2006. – P. 74–78.
  • Ghaemi K. A Small-Aperture, Ultrawideband HF/VHF Direction-Finding System For Unmanned Aerial Vehicles / K. Ghaemi, R. Ma, N. Behdad // IEEE Transactions on Antennas and Propagation. – 2018. – Vol. 66(10). – P. 5109–5120.
  • Parkhomey I. Radar Technique for Aircraft with an Artificially Reduced RCS under Conditions of Application a Resonant Electromagnetic Field / I. Parkhomey, J. Boiko // Вісник Хмельницького національного університету. – 2022. – № 1. – С. 184–190.
  • Karpova L. Synthesis of ambiguity functions for complex radar signal processing / L. Karpova, J. Boiko, O. Eromenko // 2019 IEEE International Scientific-Practical Conference Problems of Infocommunications, Science and Technology (PIC S&T). – IEEE, 2019. – P. 1–6.
  1. 803E VHF/UHF/SHF COMINT SYSTEM [Electronic resource] / TCI INTERNATIONAL, 2004-2014. – 8 p. – Access mode: http://www.mpssme.ae/WEB/datasheets/tci/TCI803E.pdf (date of appeal: 30.03.2022).
  2. Kurushin A.A. Shkola proektirovanija SVCh ustrojstv v CST STUDIO SUITE / A.A. Kurushin. – M. : One-Book, 2014. – 433 s.
  3. Avtomatizirovannoe proektirovanie antenn i ustrojstv SVCh : uchebnoe-posobie dlja vuzov / [D. I. Voskresenskij, S. D. Kremeneckij, A. Ju. Grinjov, Ju. V. Kotov]. – M. : Radio i svjaz’, 1988. – 240 s.
  4. Gurskij D.N. Vychislenija v MATHCAD 12 / D.N. Gurskij. – SPb : Piter, 2006. – 578 s.

 

Post Author: Горященко Сергій

Translate