Надіслати статтю
вул. Інститутська 11, м. Хмельницький, 29016

МАТЕМАТИЧНА МОДЕЛЬ ОХОЛОДЖЕННЯ ДЛЯ СИНХРОННОГО ЕЛЕКТРОДВИГУНА З ПОСТІЙНИМИ МАГНІТАМИ

MATHEMATICAL COOLING MODEL FOR SYNCHRONOUS MOTOR WITH PERMANENT MAGNETS

Сторінки: 175-177. Номер: №6, 2019 (279)
Автори:
Д.Ю. ЗУБЕНКО, О.М. ПЕТРЕНКО
Харківський національний університет міського господарства імені О. М. Бекетова
D. ZUBENKO, О. PETRENKO
O.M. Beketov National University of Urban Economy in Kharkiv
DOI: https://www.doi.org/10.31891/2307-5732-2019-279-6-175-177
Рецензія/Peer review : 06.12.2019 р.
Надрукована/Printed : 1.01.2020 р.

Анотація мовою оригіналу

Синхронні двигуни з постійними магнітами (PMSM) знаходять широке застосування на транспорті. Але способи охолодження PMSM все ще залишаються проблемою. У статті пропонується використання методу кінцевих елементів під час створення математичної моделі на ефекті перехідного охолодження. Змодельовані і проаналізовані умови різних теплових навантажень і різних температур навколишнього середовища. Розрахунки показують, що склавши модель нагрівання корпусу електродвигуна можна отримати оптимальний варіант для випробування нових і вже створених прототипів.
Ключові слова: електричний транспорт, електродвигуни, математична модель, тепловийконтроль, діагностика, випробування.

Розширена анотація англійською мовою

Permanent magnet synchronous motors (PMSM) are widely used in transportation. But the cooling strategy of the PMSM is still a problem. The article proposes the use of the finite element method when creating a mathematical model on the effect of transitional cooling. The conditions of various heat loads and various ambient temperatures are modelled and analysed. Calculations show that by making a model of the motor case, it is possible to obtain the best option for testing new and already created prototypes. Electric motors with permanent magnets are increasingly used in electric vehicles. The advantage of these engines is ease of maintenance, reliability, and significant efficiency. However, the output power can never be equal to the input power, because there is always a loss. More heat will inevitably be generated inside the engine with increasing power requirements [5, 6]. Most of the engines in production can no longer be maintained at a safe temperature level only by the natural convection cooling system [7], such as permanent magnet synchronous motors (PMSM) in drive systems [8, 9]. There is a contradiction between high heat generation and insufficient cooling capacity of the PMSM during operation time. Consequently, how to balance heat management requirements and the engine’s limited ability to generate heat is an imperative problem that must be solved. There are various approaches to the implementation of engine cooling. For example, the simplest is self-cooling by natural convection with external ribs embedded in the housing, and the cooling effect can be enhanced by a fan mounted on one end of the shaft. There are other cooling systems such as liquid, but their main drawback is the presence of additional devices, which increases the drive mass and reduces reliability. Self-cooling or air-cooling is still the main thermal control method for the PMSM in the system drive. Therefore, it is relevant to develop a mathematical model for this type of engine.
Keywords: electric transport, electric motors, mathematical model, heat control, diagnostics, testing.

References

  1. Qi H.T., Fu Y.L., Qi X.Y., Lang Y. Architecture optimization of more electric aircraft actuation system, Chin. J. Aeronaut. 24 (2011), 506–513.
  2. Cao W.P., Mecrow B.C., Atkinson G.J., Bennett J.W., Atkinson D.J. Overview of electric motor technologies used for more electric aircraft (MEA), IEEE Trans. Industr. Electron. 9 (59) (2012), 3523–3531.
  3. Kang R.J., Jiao Z.X., Wang S.P., Chen L.S. Design and simulation of electrohydrostatic actuator with a built-in power regulator, Chin. J. Aeronaut. 22 (2009), 700–706.
  4. Bennett J.W., Mecrow B.C., Jack A.G., Atkinson D.J. A prototype electrical actuator for aircraft flags, IEEE Trans. Ind. Appl. 46 (3) (2010), 915–921.
  5. Morimoto S., Tong Y., Takeda Y., Hirasa T. Loss minimization control of permanent magnet synchronous motor drives, IEEE Trans. Ind. Appl. 14 (5) (1994), 511–517.
  6. 6 Yamazaki K., Seto Y. Iron loss analysis of interior permanent-magnet synchronous motors-variation of main loss factors due to driving condition, IEEE Trans. Ind. Appl. 42 (4) (2006), 1045–1052.
  7. Moir I., Seabridge A. Aircraft Systems: Mechanical, Electrical, and Avionics Subsystems Integration, third ed., John Wiley & Sons Inc, Hoboken, 2008.
  8. Guo H., Xu J.Q., Kuang X.L. A novel tolerant permanent magnet synchronous motor with improved optimal torque control for aerospace application, Chin. J. Aeronaut. 28 (2) (2015), 535–544.
  9. Shi J.T., Zhu Z.Q. et al., Comparative study of synchronous machines having permanent magnet in stator, Electr. Pow. Syst. Res. 133 (2016), 304–312.
  10. Farsane K., Desevaux P., Panday P.K. Experimental study of the cooling of a closed type electric motor, Appl. Therm. Eng. 20 (2000), 1321–1334.
  11. Micallef C., Pickering S.J., Simmons K.A. et al., Improved cooling in the end region of a strip-wound totally enclosed fan-cooled induction electric machine, IEEE Trans. Industr. Electron. 55 (10) (2008), 3517–3524.
  12. Pyrhonen J., Lindh P., Polikarpova M. et al. Heat-transfer improvements in an axial-flux permanent-magnet synchronous machine, Appl. Therm. Eng. 76 (2015), 245–251.
  13. Kulkarni D.P., Rupertus G., Chen E. Experimental investigation of contact resistance for water cooled jacket for electric motors and generators, IEEE Trans. Energy Convers. 27 (1) (2012), 204–210.
  14. Davin T., Pelle J., Harmand S., Yu R. Experimental study of oil cooling systems for electric motors, Appl. Therm. Eng. 75 (2015), 1–13.
  15. Lim D.H., Kim S.C. Thermal performance of oil spray cooling system for in wheel motor in electric vehicles, Appl. Therm. Eng. 63 (2014), 577–587.

Post Author: npetliaks

Translate